

GOVERNO DO ESTADO DO PARÁ SECRETÁRIA DE ESTADO DE TRANSPORTES - SETRAN

PROJETO BÁSICO DE ENGENHARIA PARA CONSERVAÇÃO E RESTAURAÇÃO COM IMPLANTAÇÃO DE ACOSTAMENTOS

RODOVIA : PA - 275

TRECHO : ENTRONC. BR 155 - PERÍMETRO URBANO DE PARAUAPEBAS SUB-TRECHO : ENTRONC. BR 155 - PERÍMETRO URBANO DE CURIONÓPOLIS

LOTE : I

EXTENSÃO : 31,5 km

VOLUME 01 RELATÓRIO DO PROJETO

<u>Índice</u>

1.	Apresentação:					
2.	Мара	a de situação:	06			
3.	Resu	mo do Projeto:	08			
4.	Estu	dos				
	4.1	Estudos de Tráfego:	11			
	4.2	Estudos Topográficos:	13			
	4.3	Estudos Geotécnicos:	16			
	4.4	Estudos Hidrológicos:	18			
5.	Proje	etos				
	5.1	Projeto Geométrico:	31			
	5.2	Projeto de Terraplenagem:	34			
	5.3	Projeto de Drenagem e OAC:	39			
	5.4	Projeto de Pavimentação:	52			
	5.5	Projeto de Sinalização:	68			
	5.6	Projeto de OAE (Pontes):	86			
6.	Quad	dro de Quantidades:	88			
7.	Cron	ograma Físico:	97			
8.	Cons	sumo de Materiais:	99			
9.	Relação de Equipamentos Mínimos:					
10.	Infor	mações para Elaboração do Plano de Execução de Obras:	102			
11.	Especificações Técnicas: 10					

1.	Apresentação

1. Introdução

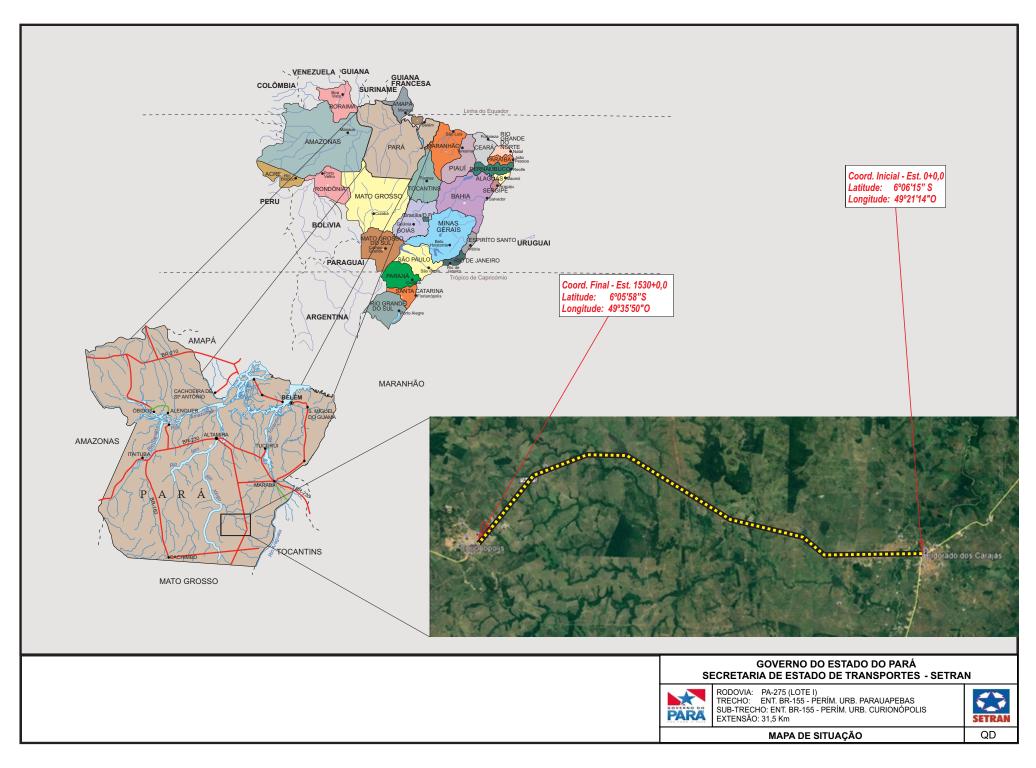
A SETRAN – SECRETARIA DE ESTADO DE TRANSPORTES, CNPJ 04.953.717/0004-51, com sede na Av. Almirante Barroso, nº 3639, Bairro: Souza, CEP: 66613-907, Belém/PA, Fone: (91) 4009-3801, apresenta o Relatório de Projeto Básico de Engenharia para Conservação e Restauração com implantação de acostamentos da Rodovia PA-275, trecho: Entroncamento BR-155 – Perímetro Urbano do Município de Parauapebas, Sub-trecho: Entroncamento BR-155 – Perímetro Urbano do Município de Curionópolis, Lote-I, com extensão de 31,5 Km, elaborado pela subcontratada Geográfica Engenharia Ltda, empresa inscrita no CNPJ 09.445.227/0001-15, com sede na Rua Ricardo Borges, 1054, Guanabara, Ananindeua-Pará.

O projeto básico está apresentado nos seguintes volumes:

- Volume 1 Relatório de Projeto e documentos para Licitação;
- Volume 2 Projeto Básico de Execução;

O conteúdo de cada volume esta descrito a seguir:

Volume 1 - Relatório de Projeto e Documentos para Licitação - Tamanho A-4.


Este volume reúne todas as metodologias que possibilitaram a definição das soluções a serem adotadas nas fases seguintes dos projetos nos diversos itens de serviços. Apresenta também, todos os estudos preliminares realizados que orientaram as tomadas de decisões referentes às soluções adotadas e planilhas com estimativas de quantitativos e orçamento dos serviços a executar que complementam os documentos para concorrência.

Volume 2 - Projeto Básico de Execução - Tamanho A-3.

- Mapa de situação
- Projeto Geométrico
- Gráfico de localização das jazidas e distribuição de material de pavimentação
- Seções tipo: Geométrico, Pavimentação e Terraplenagem
- Sinalização

Vale ressaltar que o resumo dos preços, demonstrativo do orçamento e as composições de preços unitários foram elaborados com base na metodologia vigente na Secretária de Estado de Transportes do Estado do Pará - SETRAN/PA.

2. MAPA DE SITUAÇÃO

3. RESUMO DE PROJETO

3.1 Considerações Gerais

Neste capítulo, são sintetizados os principais aspectos relativos ao Projeto Básico de Engenharia para Conservação e Restauração com implantação de acostamentos na Rodovia PA-275, trecho: Entroncamento BR-155 – Perímetro Urbano do Município de Parauapebas, Subtrecho: Entroncamento BR-155 – Perímetro Urbano do Município de Curionópolis, Lote-I, com extensão de 31,5 Km.

As informações aqui apresentadas objetivam permitir as empresas interessadas na licitação das obras, o conhecimento dos aspectos mais relevantes dos serviços a realizar, visando à elaboração do Plano de trabalho para a execução e o cálculo dos preços unitários e orçamento, de modo realista e justo.

Assim, os itens mais adiante apresentados, 3.3 – Estudos e 3.4 – Projetos, têm por finalidade descrever, sem maiores detalhes, todos os estudos e projetos desenvolvidos, informando os volumes, planilhas e anexos em que os resultados desses estudos e os detalhes dos projetos poderão ser encontrados.

No Item 4 – Quantitativos e Documentos para Licitação, serão fornecidos os elementos de maior interesse para o processo licitatório, ou seja, aqueles mais diretamente ligados à natureza e a quantidade de cada tipo de serviço considerado no projeto.

3.2 Breve Histórico

A Rodovia PA-275, no trecho em estudo, abrange um trajeto que vai do Entroncamento da BR-155 ao Perímetro Urbano do Município de Curionópolis, com 31,50 Km de extensão.

A fase de projeto básico é caracterizada pelo estudo das condições atuais da rodovia a fim de avaliar sua adequação aos objetivos propostos.

A existência de rodovia implantada que se pretenda melhorar não gera necessidade de estudo de traçado como definido na instrução IS-207 (Estudos Preliminares de Engenharia para Rodovias).

Entretanto, serão analisadas as condições geométricas da rodovia e, determinada sua capacidade de tráfego para um período de 10 anos, por se tratar de uma conservação e restauração, será proposto melhoramentos localizados nos pontos de estrangulamento encontrados, elevação de greide, correção do traçado e adequação dos raios de curvatura.

A Rodovia apresenta um estado de trafegabilidade de regular a bom, com características técnicas enquadradas como classe III. A diretriz em sua maior parte atravessa regiões onduladas a plana.

O traçado aproveitou a diretriz da rodovia já implantada, com plataforma de terraplenagem variando de 6,0 a 7,0 metros, possui, em sua maior parte, greide colado. O subleito encontra-se estabilizado em torno de 40% e o restante em consolidação.

Para este lote existem 05 (cinco) obras de arte especial que serão mais bem exploradas no capitulo 3.4.6 – Obras de Arte Especial.

As obras de arte corrente existentes, em sua grande maioria, deverão ser substituídas em razão das precárias condições atuais, sendo que haverá necessidade de implantação de novas obras e alongamento das existentes.

A Rodovia está implantada em uma área onde não existe um sistema de drenagem superficial eficiente que proteja o pavimento de erosões provocadas por velocidades excessivas da água para o tipo de solo da região.

É comum o aparecimento de acumulações de águas nas laterais, proveniente dos rios e igarapés. Essas áreas são periodicamente inundáveis e vulneráveis no período invernoso, havendo necessidade de elevar o greide e implantar linhas de drenagem superficial (Meio-fio, sarjeta, entradas e descidas d'água e dissipadores) e drenagem profunda (bueiro) a fim de garantir a segurança do trecho.

Sempre que possível, aproveitar os serviços existentes, verificando as condições de aproveitamento destes, segundo o padrão de qualidade estabelecido pelas instruções de serviço específicas e pelo Manual de Projeto Geométrico de Rodovias Rurais – DNIT/IPR.

4.	ESTUDOS	
4.	ESTUDOS	

4.1 Estudos de tráfego

O presente Projeto de Conservação e Restauração com implantação de acostamentos da Rodovia PA-275, trecho: Entroncamento BR-155 – Perímetro Urbano do Município de Parauapebas, Sub-trecho: Entroncamento BR-155 – Perímetro Urbano do Município de Curionópolis, com extensão de 31,5 Km, tem como objetivo avaliar a suficiência do fluxo de tráfego existente na via em projeto, determinar suas características, subsidiar o projeto de pavimentação, determinar e verificar as características operacionais da rodovia determinando a melhoria da capacidade rodoviária e assim contribuir para o desenvolvimento econômico da região.

Realizado de acordo com a IS-201 (Estudos de Tráfego em Rodovias) e as seguintes recomendações:

- a) Avaliar a capacidade de tráfego da rodovia por período de 10 anos, por segmento homogêneo.
- b) Determinar o Número N do projeto. Nas projeções e alocações de tráfego, manter os fatores de crescimento e as premissas de alocação estabelecidas no Plano Diretor Rodoviário, elaborado pelo extinto DNER, atual DNIT, para a região. Na execução dos serviços de estatística de tráfego, seguir as instruções do DNER sobre o assunto.

4.1.1 - Localização e Caracterização Funcional da Rodovia

A Rodovia PA-275 está localizada na região Sudeste do Estado do Pará, ocupando a região de integração do Araguaia, interceptando a Rodovia PA-160 e BR-155, atende diretamente aos municípios de Eldorado dos Carajás, Curionópolis e Parauapebas.

É um tronco viário vital para o estado, pois permite o acesso às principais regiões mineradoras do mesmo. A rodovia é pavimentada em toda a sua extensão.

Para o trecho em estudo, a velocidade diretriz de projeto adotada é de 80,0 km/h.

4.1.2 - Determinação do número "N"

Caracterizando a Rodovia como classe III e objetivando subsidiar o presente Estudo de Tráfego, estimou-se um valor de número "N" que se enquadrasse na faixa $5 \times 10^6 < N \le 10^7$ adotando-se uma espessura de 7,0cm para revestimento asfáltico no pavimento flexível.

Este dimensionamento será mais bem explorado no projeto executivo, devido à particularidade da via em atender um tráfego desviado de uma rodovia federal com grande incidência de mineradoras na região o que acarreta o fluxo de veículos de grande porte.

• Espessura mínima de revestimento

ESPESSURA MÍNIMA DE REVESTIMENTO BETUMINOSO	N
– Tratamentos Superficiais Betuminosos	N ≤ 10 ⁶
– Revestimento Betuminoso com 5,0 cm de espessura	$10^6 < N \le 5 \times 10^6$
– Concreto Betuminoso com 7,5 cm de espessura	$5x10^6 < N \le 10^7$
– Concreto Betuminoso com 10,0 cm de espessura	$10^7 < N \le 5x10^7$
– Concreto Betuminoso com 12,5 cm de espessura	N > 5x10 ⁷

Para as rodovias de Classe III com pistas simples, as mesmas suportam volumes de tráfego compreendidos entre 300 e 700 vmd no 10º ano de abertura.

CLASSES DE PROJETO		CARACTERÍSTICAS	CRITÉRIO DE CLASSIFICAÇÃO TÉCNICA		
0		Via expressa	Decisão administrativa		
U		Controle total de acesso			
	Α	Pista dupla	Os volumes de tráfego previstos ocasionarem níveis de serviço em rodovias de pista simples		
1		Controle parcial de acesso	inferiores aos níveis C ou D		
	В	Pista simples	Volume horário de projeto (VMH) > 200		
	Ь	Controle parcial de acesso	Volume médio diário (VMD) > 1400		
II		Pista Simples	700 < VMD ≤ 1400 veículos		
III	l	Pista Simples	300 ≤ VMD ≤ 700 veículos		
IV	Α	Pista Simples	50 ≤ VMD ≤ 300 veículos		
IV	В	Pista Simples	VMD < 50 veículos		

Volumes de tráfego bidirecionais, referindo-se a veículos mistos e previstos no 10º ano após a abertura da rodovia ao tráfego.

Conforme informado anteriormente, o dimensionamento do número "N" será mais bem explorado no projeto executivo.

4.2 Estudos topográficos

O Estudo Topográfico foi realizado objetivando o fornecimento das informações necessárias à elaboração dos Projetos: Geométrico, Terraplenagem, Drenagem, Obras de Arte Correntes e Especiais, etc..

Seguindo recomendações da Norma ABNT 13.133 – Execução de Levantamento Topográfico, os estudos topográficos para o projeto básico desenvolvem-se em uma única fase, logo após a definição preliminar dos traçados a serem estudados e poderão ser realizados por Levantamento topográfico convencional.

O levantamento topográfico por processo convencional terá a sequência indicada a seguir:

• Implantação de uma rede topográfica básica:

Esta rede topográfica básica constituir-se-á de:

- a) Implantação de uma poligonal planimétrica topográfica com marcos monumentados de lados aproximados de 1 km, ao longo do traçado escolhido para o Projeto Básico Rodoviário e amarrado a marcos da rede geodésica de 1ª ordem do IBGE.
- b) Implantação de uma linha de nivelamento com RRNN localizadas de 0,5 km em 0,5 km, ao longo do traçado escolhido para o Projeto Básico Rodoviário.

• Locação e amarração do Eixo:

A locação foi desenvolvida na sua maioria pelo eixo da Rodovia existente ate a estaca 1530+0,00. A estaca inicial 0+0,00 esta localizada no Entroncamento da BR-155, perímetro urbano de Eldorado dos Carajás e a estaca final esta localizada no Perímetro urbano do município de Curionópolis, totalizando uma extensão de 31.50 km.

Lançamento de linhas de exploração:

Estas linhas serão amarradas à rede topográfica básica e obtidas com emprego de equipamentos topográficos tipo estação total ou teodolitos e trenas de aço. A tolerância admitida para erro angular da linha de exploração será o estabelecido pela expressão:

$$e = 10\sqrt{n}$$

Em que:

e = tolerância, em minutos;

n = número de vértices.

O eixo será piqueteado de 20m em 20m e em todos os pontos notáveis tais como: PI, acidentes topográficos, cruzamentos com estradas, margens de rios e córregos. Em todos os piquetes implantados serão colocadas estacas testemunhas, constituídas de madeira de boa

qualidade com cerca de 60 cm de comprimento, providas de entalhe inscrito em tinta a óleo, de cima para baixo, o número correspondente.

Todos os piquetes correspondentes aos PI, bem como os piquetes a cada 2 km das tangentes longas, serão amarrados por "pontos de segurança", situados a mais de 20 m do eixo da rodovia.

O processo de amarração será constituído, normalmente, por oito marcos. Serão organizadas cadernetas de amarrações e registrados os elementos dos pontos amarrados.

As medidas de distância serão feitas a trena de aço, segundo a horizontal para efeito de localização dos piquetes da linha de exploração, entretanto é recomendável utilizar processo estadimétrico para leitura das distâncias entre PI, a fim de se conferir as medidas efetuadas.

• Nivelamento e contranivelamento das linhas de exploração:

O nivelamento e contranivelamento de todos os piquetes das linhas de exploração serão feitos com emprego de níveis de precisão.

O controle do nivelamento e contranivelamento será por amarração deste nivelamento com a linha básica de RRNN.

A tolerância nos serviços de nivelamento será de 2 cm/km e a diferença acumulada máxima será inferior ou igual à obtida pela fórmula:

 $e = 12,5\sqrt{n}$

Em que:

n = quilômetros;

e = milímetros

Junto ao nivelamento do eixo, serão nivelados e contra-nivelados todos os pontos notáveis das travessias de cursos d'água existentes, quando anotadas, na caderneta de nivelamento, a cota do espelho d'água, data do nivelamento e cota da máxima enchente.

Levantamento de seções transversais:

Foram levantadas seções transversais em todas as estacas da locação, abrangendo o terreno natural e os seguintes pontos da plataforma: eixo, bordos, início e fim de acostamentos, degraus entre o revestimento primário e acostamento, borda do aterro e off-sets.

O levantamento de seções transversais foi feito nos piquetes da linha de exploração, pelo método de irradiações com uso de Estações totais para a eficácia dos trabalhos, em face da possibilidade de prescindir de cadernetas de campo, armazenar grande quantidade de dados e eliminar erros de anotação, muito freqüentes nos serviços topográficos de campo.

Estes equipamentos reúnem, em um único aparelho, a medição de ângulos e distâncias, apresentando vantagens em relação aos equipamentos tradicionais quanto à coleta, armazenamento, processamento, importação e exportação de dados coletados no campo. Possuem sensor ativo, pois recebe os dados a partir de um feixe de radiações na faixa do infravermelho, por ele próprio gerado, que atinge prismas colocados sobre o alvo objeto, retornando por reflexão e excitando os sensores da mesma fonte geradora.

Os softwares internos utilizados são capazes de processar cálculos de áreas, coordenadas de pontos, alturas, desníveis, distâncias inclinadas e reduzidas resultando em segurança e grande economia de tempo de trabalhos realizados no escritório. Os softwares topográficos deverão ter o formato TSO, ASCII, DXF ou DGN, os quais além de efetuarem os cálculos deverão, também, editar desenhos através da função CAD, contribuindo para a automatização dos projetos.

A calibração dos medidores eletrônicos de distância deverá ser realizada, tanto para teodolitos e níveis, como para as estações totais conforme recomendação da Norma ABNT 13.133 – Execução de Levantamento Topográfico.

Levantamento das Obras de Arte Correntes:

Todas as obras de arte correntes existentes ao longo do trecho foram devidamente levantadas, através do lançamento de seções transversais acompanhando o eixo de cada obra.

Foi nivelada a plataforma, o talvegue, muros de testa, calçadas e fornecidas as esconsidades, informações complementares como tipos, dimensões e estados de conservação foram também anotados.

• Levantamento de Obras de Arte Especiais:

De maneira informativa foi efetuado o levantamento das Pontes existentes que será apresentado no capitulo 3.4.6.

4.3 Estudos Geotécnicos

Os estudos geotécnicos para o projeto básico de Engenharia para Conservação e Restauração da Rodovia PA-275, Lote-I, no Sub-trecho em estudo foi desenvolvido de acordo com a IS-206 – Instrução de Serviços para Estudos Geotécnicos, objetivando definir e especificar os serviços constantes do estudo geotécnico nos projetos de engenharia rodoviária para a elaboração dos projetos básicos de terraplenagem e pavimentação.

Buscou-se conhecer as características dos seguintes materiais:

- Subleito e pavimento existentes;
- Materiais constituintes dos cortes;
- Àreas de empréstimos;
- Ocorrências de materiais para subsidiar Projetos de pavimentação, obras de arte correntes, obras complementares, drenagem e Terraplenagem.

Estudo do Terreno Natural e das Ocorrências de Materiais para Emprego nas Camadas de Terraplenagem e Pavimentação

a) Estudo do Subleito

Para conhecimento dos materiais constituintes do subleito para os serviços de implantação de acostamentos, foram realizadas, seguindo as determinações do DNIT, sondagens no corpo estradal a pá e picareta, nos pontos mais altos dos cortes, situados a intervalos de aproximadamente 1000 m, atingindo profundidade compatível com a possível cota do greide no local com profundidade em torno de 1,00m. As amostras coletadas em cada furo, nos diversos horizontes de material, serão objeto de ensaios de caracterização, compactação e ISC.

A metodologia adotada para as sondagens do subleito em terreno natural foi à seguinte:

- Desenho topográfico do perfil do terreno natural do eixo da pista nova a ser pavimentada;
- Desenho do greide de projeto no perfil acima;
- Separação das áreas de cortes e aterros no perfil longitudinal;
- Definição dos furos a serem realizados.

Para atendimento das características do terreno natural sobre o qual se desenvolverá o traçado da pista foram adotados os seguintes procedimentos:

- Prospecção dos cortes até 1,00m de profundidade abaixo do greide de terraplenagem, para determinação do perfil constitutivo, classificação dos materiais, verificação da umidade e coleta de amostras para caracterização através de ensaios de laboratório;
- Prospecção das ocorrências de solos, rocha e areia, para seleção quântito-qualitativa, inclusive com coleta de amostras para realização de ensaios de laboratório.
- Caracterização Física: Análise granulométrica por peneiramento, análise granulométrica por sedimentação, limite de liquidez e limite de plasticidade;
- Caracterização Mecânica: Compactação, determinação do ISC.

b) Estudo das ocorrências de materiais

Nesta fase de projeto básico, os estudos das ocorrências de materiais foram desenvolvidos com o objetivo de localizar jazidas, pedreiras e areais e analisar superficialmente as características e quantidades do solo de modo a suprir as necessidades dos serviços de terraplenagem, drenagem e pavimentação da rodovia. A seguir, comenta-se sobre o resultado obtido para cada tipo de ocorrência.

> Empréstimos

Existem áreas as margens da rodovia que servirão de empréstimos no fornecimento de material para utilização na execução dos aterros.

Jazidas

Existem áreas próximas ao empreendimento em condições de serem utilizadas em camadas de base e sub-base do pavimento.

Areais / Pedreira

Da mesma forma que os itens anteriores, estes insumos podem ser adquiridos nos municípios próximos ao empreendimento para utilização nos serviços de revestimento asfáltico e drenagem.

Parâmetros de Materiais para Execução do Projeto de Terraplenagem:

Apresentam-se a seguir os principais parâmetros geotécnicos atendidos quando da elaboração do projeto de terraplenagem:

Parâmetros de materiais para acabamento de terraplenagem (últimos 60,0cm nos aterros):

- ✓ ISC \geq 8%
- ✓ Expansão ≤ 1%
- ✓ Espessura = 60,0 cm.

> Parâmetros de materiais para corpo do aterro:

- ✓ ISC ≥ 2%
- ✓ Expansão ≤ 4%.

> Critérios para substituição de materiais de subleito (cortes):

Deverão ser substituídos os materiais do subleito que apresentem expansão maior que 2% e ou ISC $\le 8\%$ (materiais de péssima qualidade). Estes materiais deverão ser substituídos por outros que apresentem:

- ✓ ISC ≥ 8%
- ✓ Expansão ≤ 1%
- ✓ Espessura = 60,0 cm

4.4 Estudo Hidrológico

O Estudo hidrológico foi desenvolvido de acordo com a IS-203 - Instrução de Serviço para Elaboração de Estudos Hidrológicos e o Manual de Hidrologia Básica para Estruturas de Drenagem, ambas as publicações do DNIT, abrangendo as seguintes etapas:

- Caracterização climática e geomorfológica da região de interesse;
- Determinação das características das bacias hidrográficas atravessadas pelo trecho;
- Coleta de dados pluviográficos e pluviométricos para determinação do regime de chuvas da região;
- Elaboração de cálculos, a partir dos dados obtidos e das determinações feitas, para conhecimento das condições em que se verificam as precipitações pluviais e o escoamento superficial.

A finalidade da orientação adotada no estudo é obter os elementos de natureza hidrológica que permitam:

- Verificação das seções de vazão das obras de arte correntes e especiais existentes, incluindo vistoria realizada "in loco" por técnicos especializados;
- Dimensionamento hidráulico das novas obras de arte correntes a construir e/ou substituir;
- Dimensionamento hidráulico das pequenas obras de drenagem a construir.

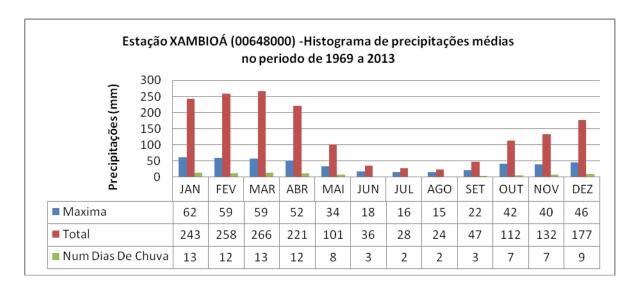
> Clima

As condições climáticas deste segmento são determinadas através dos fatores dinâmicos, que asseguram certa homogeneidade de clima, característico de toda a região Norte. Possui características climáticas quentes, úmido a semiárido, com 1 a 5 meses secos. O clima da região atravessada pela rodovia em estudo, segundo a classificação de Wladimir Köppen enquadra no tipo tropical AW, quente e úmido com chuvas de verão, cujas principais características são:

Clima tropical quente e úmido com estação seca bem acentuada coincidindo com o inverno e estação úmida correspondendo à primavera e verão; a temperatura média dos meses quentes mantém-se acima de 18°C, limite abaixo do qual não se pode desenvolver certas plantas tropicais.

O clima do tipo AW tem, pelo menos, um mês com altura de chuva inferior a 60,0mm. Correspondem as savanas tropicais.

Histórico das Chuvas


Para o estudo das precipitações pluviométricas, utilizaram-se os dados da Estação Meteorológica mais representativa para o trecho, sendo que os dados foram obtidos junto a ANA (Agência Nacional de Águas) e a estação de coleta é:

Estação pluviométrica de XAMBIOÁ (00648000)

Dados da Estação	Dados da Estação					
Código	648000					
Nome	XAMBIOÁ					
Código Adicional	ANA					
Bacia	RIO TOCANTINS (2)					
Sub-bacia	RIO ARAGUAIA,MURICIZAL,LONTRA (28)					
Estado	TOCANTINS					
Município	XAMBIOÁ					
Responsável	ANA					
Operadora	CPRM					
Latitude	-6:24:47					
Longitude	-48:32:0					
Altitude (m)	148					

Após consultas, foram encontradas leituras de pluviógrafos desde setembro de 1969 até setembro de 2013, totalizando 44 anos de observações. Foram detectadas falhas de registros nos períodos de agosto de 1971 a dezembro de 1972 e de julho de 2006 a março de 2007, alem de diversas falhas pontuais. Todas as falhas foram sistematicamente preenchidas com o valor da média correspondente ao mês do mesmo nome, doando maior confiabilidade à série.

Com resultado da análise e homogeneização da série foram calculados os parâmetros característicos da pluviometria local, conforme resumido no histograma apresentado a seguir:

Estudo estatístico das chuvas máximas

Para definição das descargas máximas prováveis, um dos fatores mais importantes é a caracterização das intensidades máximas que poderão ocorrer na área do projeto.

Neste estudo, serão utilizadas as leituras máximas anuais do posto pluviométrico de XAMBIOÁ (00648000), processadas mediante análise estatística conforme as metodologias de Gumbel e Ven Te Chow.

O período de recorrência (TR) é definido como sendo o intervalo médio de anos dentro do qual ocorre ou é superada uma dada chuva de magnitude P. Se Pb é a probabilidade desse evento ocorrer ou for superado em um ano qualquer, tem-se a relação TR = 1/Pb.

Tomando-se N anos de observação de um determinado posto pluviométrico, seleciona-se a precipitação máxima diária ocorrida em cada ano, obtendo-se a série anual de valores.

Ordenando-se em ordem decrescente com um número de ordem M que varia de 1 a N, pode-se calcular a freqüência com que o valor P de ordem M é igualado ou superado no rol de N anos como sendo F = M / N + 1 (Critério de Kimball).

Quando N é muito grande, o valor de F é bastante próximo de Pb, mas para poucas observações pode haver grandes afastamentos. Esta é à base do método de Gumbel. O cálculo de probabilidades obtido por Gumbel supõe que existam infinitos elementos. Na prática, pode-se levar em conta o número real de anos de observação utilizando-se a fórmula geral de Ven Te Chow.

$$Pmxd = Pmed + k \cdot \sigma$$

Onde:

Pmxd = Precipitação máxima diária provável para certo período de recorrência;

Pmed = Média das precipitações máximas no período observado;

k = Fator de frequência;

 σ = Desvio padrão das N precipitações máximas diárias.

Os valores do fator de frequência (k) são obtidos através da expressão:

$$k = (y - y_n) / \sigma_n$$

Onde:

y = Variável reduzida: y = -Ln [Ln (TR) - Ln (TR-1)]

 $y_n = Média \ aritmética \ da \ variável \ reduzida: \ y_n = \Sigma \ y \ / \ n$

 σ_n = Desvio-padrão da variável reduzida: $\sigma_n = \left[\sum (y - y_n)^2 / n \right]^{1/2}$

n = número de amostras

 Σ y = somatório das variáveis reduzidas relativas a cada elemento da amostra.

	VARIÁVEL REDUZIDA Y									
TR	TR 5 10 15 20 25 50 100									
y	1,5	2,25	2,674	2,97	3,199	3,902	4,6			

Segue a série histórica das máximas e o processamento estatístico conforme exposto acima da estação pluviométrica XAMBIOÁ (00648000):

	1	
Ano	Máxima (mm)	Mês
1970	131	JAN
1971	65	SET
1972	62	JAN
1973	82	JUN
1974	70	MAR
1975	68	NOV
1976	68	MAI
1977	60	JAN
1978	94	JAN
1979	79	ABR
1980	87	FEV
1981	148	OUT
1982	83	DEZ
1983	190	JAN
1984	68	ABR
1985	110	MAR
1986	146	JAN
1987	96	MAR
1988	121	FEV
1989	98	NOV
1990	69	OUT
1991	85	MAI

Ano	Máxima (mm)	Mês
1992	81	FEV
1993	102	FEV
1994	69	JAN
1995	71	NOV
1996	113	MAR
1997	123	ABR
1998	66	DEZ
1999	118	MAR
2000	97	FEV
2001	78	DEZ
2002	94	JAN
2003	70	DEZ
2004	95	FEV
2005	81	MAR
2006	113	MAR
2007	62	JAN
2008	104	FEV
2009	134	FEV
2010	78	OUT
2011	89	ABR
2012	95	ABR
2013	113	NOV

Parâmetros

Após tratamento estatístico conforme exposto acima foram calculados os seguintes parâmetros:

Pmed = Média das precipitações máximas no período observado = 93,8 mm σ = Desvio padrão das N precipitações máximas diárias = 27,66 mm

Cálculo do fator de freqüência "k" para TR de 44 anos e cálculo das chuvas máximas diárias prováveis para os tempos de recorrência:

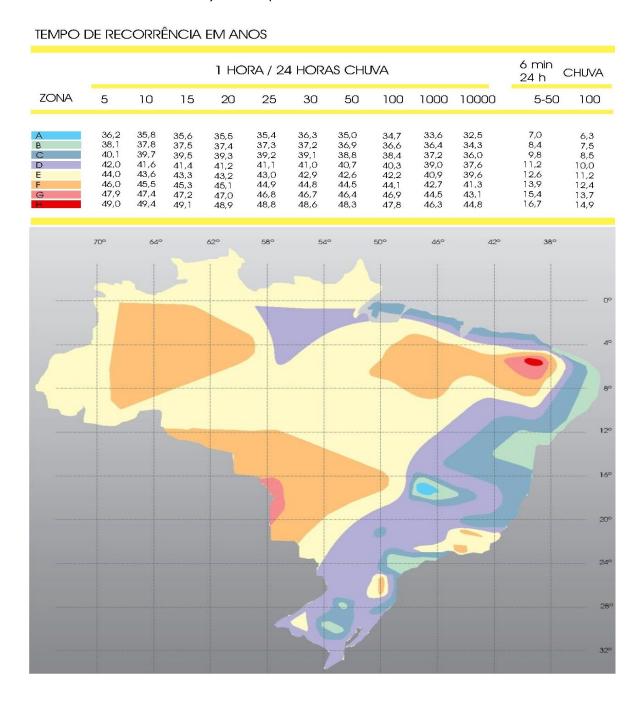
 y_n = Média aritmética da variável reduzida (44 anos) = 0,545805

 σ_n = Desvio-padrão da variável reduzida = 1,15

TR	5	10	15	20	25	50	100
у	1,5	2,25	2,674	2,97	3,199	3,902	4,6
k	0,830	1,482	1,851	2,108	2,307	2,919	3,526
Pmxd (mm)	116,76	134,81	145,00	152,13	157,62	174,54	191,34

> Definição das Curvas de Precipitação x Duração x Freqüência

As precipitações máximas prováveis determinadas pelo estudo estatístico para os tempos de recorrência de 5, 10, 15, 20, 25, 50 e 100 anos correspondem as chuvas diárias (1 dia). Seguidamente é feita a conversão da chuva de 1 dia em chuva de 24 horas, multiplicando-se a


primeira pelo fator 1,13 conforme recomendado na pág. 106 do "Manual de Hidrologia Básica para Estruturas de Drenagem" – IPR 715 do DNIT.

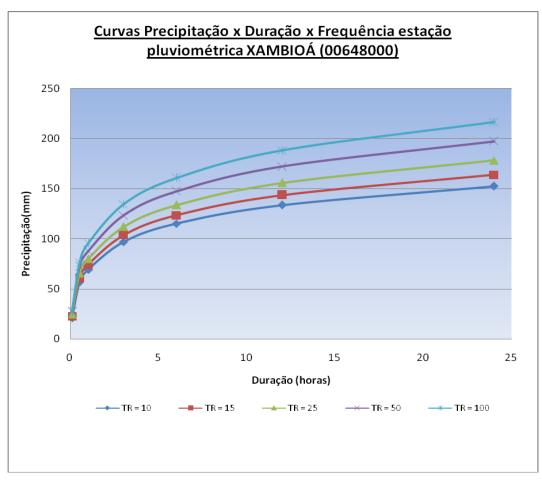
Chuvas máximas prováveis estação pluviométrica XAMBIOÁ (00648000):

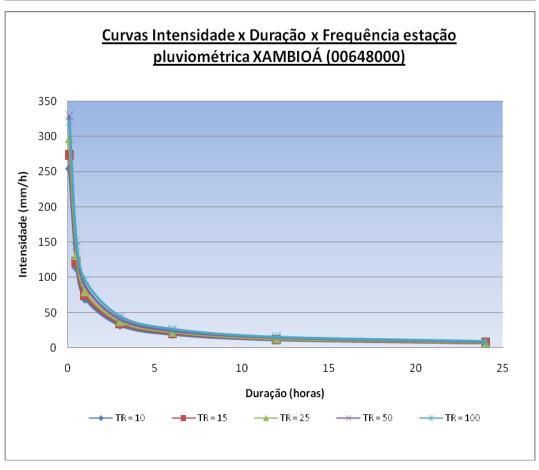
TR	5	10	15	20	25	50	100
Pmáx (mm)	116,76	134,81	145,00	152,13	157,62	174,54	191,34
P24 (mm)	131,94	152,34	163,85	171,91	178,11	197,24	216,22

Para possibilitar a desagregação das chuvas de 24 horas foram utilizadas as correlações expostas na publicação "Práticas Hidrológicas" do engenheiro Jaime Taborga Torrico (1974).

Após superposição cartográfica local de implantação do projeto no Mapa de Isozonas contido na citada publicação foi definida a Isozona "F" (Zonas Continental e Noroeste com coeficientes de intensidade altos) como aplicável ao do trecho em estudo.

Conseqüentemente foram escolhidos os percentuais definidos pela isozona "F", a serem utilizados para obtenção das chuvas de 1 hora e 6 minutos. O restante das durações foi interpolado das curvas logarítmicas geradas com os dados da desagregação.


Desagregação precipitações estação pluviométrica XAMBIOÁ (00648000):


	Duração/Desagregação										
min	5	30	60	180	360	720	1440				
horas	0,083	0,5	1	3	6	12	24				
TR		Alturas	das precip	itações des	sagregadas	(mm)					
10	21	57	69	97	115	134	152				
15	23	61	74	104	123	144	164				
25	25	66	80	112	134	156	178				
50	27	72	88	123	147	172	197				
100	27	76	95	134	161	188	216				

Intensidade das chuvas desagregadas estação pluviométrica XAMBIOÁ (00648000):

Duração/Desagregação							
min	5	30	60	180	360	720	1440
horas	0,083	0,5	1	3	6	12	24
TR	Intensidade das Precipitações Desagregadas (mm/h)						
10	254	113	69	32	19	11	6
15	273	121	74	35	21	12	7
25	297	131	80	37	22	13	7
50	329	145	88	41	25	14	8
100	322	151	95	45	27	16	9

Com base na desagregação das chuvas para os tempos de recorrência de 10, 15, 25, 50 e 100 foram elaboradas as curvas Precipitação x Duração x Frequência (PDF) e curvas Intensidade x Duração x Frequência (IDF).

> Características das Bacias Hidrográficas

As características das bacias hidrográficas cortadas pela rodovia no trecho em questão, tais como: área, declividade, cobertura vegetal, condições geológicas, etc., foram determinadas através de trabalhos de campo e do uso da seguinte documentação cartográfica:

- Cartas plani-altimétricas na escala de 1:100.000, fornecidas pelo Exército através da DSG-Diretoria de Serviço Geográfico; e
- Restituição do traçado em planta e perfil, com curvas de nível, utilizando os dados do levantamento topográfico e um software gráfico tipo CAD.
- Auxilio de softwares de processamento de modelos digitais de elevação do terreno (MDT) correspondentes à área em estudo. Os arquivos digitais MDT são fornecidos pelo Programa Embrapa Monitoramento por Satélite do Ministério da Agricultura. (http://www.relevobr.cnpm.embrapa.br)

Foram identificadas as bacias hidrográficas atravessadas pelo trecho, ajustando e complementando as informações com o traçado dos talvegues principais e localização dos pontos de transposição conforme os cadastros de OACs existentes e levantamentos topográficos de detalhe. As bacias são apresentadas em anexo.

> Tempos de Recorrência Adotados no Projeto

Foram adotados, neste estudo, os seguintes tempos de recorrência:

• Obras de drenagem subterrânea: TR = 1 ano;

• Obras de drenagem superficial: TR = 10 anos;

Obras de arte correntes:

TR = 15anos (tubulares) e 25 anos (celulares) funcionando como canal TR = 25 anos (tubulares) e 50 anos (celulares) funcionando como orifício;

• Pontes: TR = 100 anos.

> Determinação das Descargas de Projeto

A metodologia utilizada para verificação da seção de vazão das obras de arte correntes e especiais existentes, bem como o dimensionamento hidráulico das novas obras a construir/ substituir, está apresentada a seguir:

- Drenagem superficial: Método Racional
- Obras de arte correntes e OAE
- Com bacias até 4 km2: Método Racional
- Com bacias entre 4 km2 e 10 km2: Método Racional Modificado
- Com bacias maiores e 10 km2: Método Hidrograma Unitário Triangular

> Tempo de concentração

Para o cálculo do tempo de concentração, foi utilizada a formula de Kirpich Modificada proposta Manual de Hidrologia do DNIT, reproduzida a seguir:

$$Tc = 1.42 (L^3/H)^{0.385}$$

Onde:

Tc = Tempo de concentração, em hora;

L = Extensão do talvegue, em km; e

H = Diferença de nível entre o ponto mais afastado da bacia e o ponto considerado, em metros.

> Método Racional

A vazão máxima resultante do escoamento em uma bacia hidrográfica é definida pela expressão:

$$Q=C \times I \times A/3,6$$

Onde:

Q = vazão de contribuição, em m3/s;

C = coeficiente de escoamento superficial, adimensional;

I = intensidade de chuva, em mm/h; e

A = área da superfície de contribuição, em km2.

Método Racional Modificado

Quando a área da bacia esteve compreendida entre 4 km2 e 10 km2, considerou-se um coeficiente de distribuição "n" aplicado à formula do Método Racional exposta acima, que visa a correção da precipitação pontual para a precipitação uniformemente distribuída na área, dado pela expressão:

$$n = A^{-0,10}$$

Onde:

A =área da bacia, em km2.

Ficando a fórmula:

$$Q=C \times I \times A \times n /3,6$$

Onde:

Q = vazão de contribuição, em m3/s;

C = coeficiente de escoamento superficial, adimensional;

I = intensidade de chuva, em mm/h;

n = coeficiente de distribuição; e

A = área da superfície de contribuição, em km2.

Tanto no Método Racional quanto no Método Racional Modificado foram adotados, para o coeficiente de deflúvio "C" considerado como representativo da parcela do volume precipitado que se transforma em escoamento superficial, os valores indicados no quadro a seguir, originalmente publicado pelo "Colorado Highway Department" e o "U.S Soil Conservation Service", e recomendado pelo DNIT.

> Valores do coeficiente de deflúvio "C"

(fonte: "Colorado Highway Department" / "U.S Soil Conservation Service")

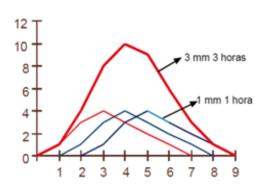
FIXAÇÃO DO COEFICIENTE DE ESCOAMENTO (C) PARA O MÉTODO RACIONAL, E DO COEFICIENTE DO COMPLEXO SOLO-VEGETAÇÃO (CN) PARA O MÉTODO DO HIDRÓGRAFO UNITÁRIO TRIANGULAR (HUT)

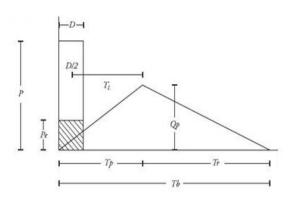
QUADRO IX

Condições de Superfície	Orografia	Pla	no	Ondul	ado	Montani	noso
		С	CN	С	CN	С	CN
Terrenos estéreis	_						
e áreas urbanizadas	A	0,10	50	0,20	55	0,30	65
	B C	0,20 0,40	55 60	0,30 0,50	60 65	0,40 0,60	70 75
	D	0,60-0,80		0,60-0,90		0,60-1,00	80
Cerrados, pastagens							
e matas ralas	A	0,20	45	0,30	50	0,40	60
	B C	0,25 0,30	50 60	0,35 0,40	55 60	0,45 0,50	65 70
	D	0,30	65	0,50	70	0,60	75
Culturas e pastagens							
terraceadas	Α	0,10	35	0,30	45	0,40	50
	В	0,20	40	0,35	50	0,45	55
	C D	0,30 0,40	50 60	0,40 0,50	60 65	0,50 0,60	60 70
Culturas terraceadas							
	Α	0,10	30	0,20	40	0,30	50
	В	0,15	40	0,30	50	0,40	55
	C D	0,20 0,40	50 60	0,40 0,50	55 65	0,50 0,60	60 70

Onde:

A = Superfície muito permeável ("LOESS" em camadas espessas);


B = Superfície permeável ("LOESS" em camadas rasas e areias);


C = Superfície semi-permeável (solos siltosos e argilosos);

D = Superfície pouco permeável (solos com argilas expansivas e pavimentos).

> Método do Hidrograma Unitário Triangular

O Método do Hidrograma Unitário Triangular consiste, fundamentalmente, na obtenção do ponto culminante da curva de descarga da bacia, para um determinado período de recorrência, a partir da acumulação geométrica dos diversos hidrogramas elementares, correspondentes a altura de chuvas acumuladas em diversas durações.

Cada hidrograma elementar representa o escoamento superficial de cada fração de chuva efetiva em "Du" horas de duração.

Em cada um desses hidrogramas, a ordenada máxima é dada pelas expressões:

$$Qp = R \times A / (1.8 \times Tb)$$

 $Tp = Du/2 + 0.6 \times Tc$

$$Tp = Du/2 + 0.6 x Tc$$

$$Tb = Tp + Tr$$

$$Tr = 1,67 \times Tp$$

$$Tb = 8/3 \times Tp$$

$$Du = Tc / 7,5$$

Sendo:

Qp = descarga de pico, em m3/s;

A =área da bacia, em km2;

R = chuva efetiva, em mm;

Tp = tempo de pico, em hora;

Du = duração da chuva unitária, em

hora;

Tc = tempo de concentração, em

hora;

Tr = tempo de recessão, em hora;

Tb = tempo de base, em hora;

O deflúvio resultante das chuvas de cada duração unitária ou "pulso" são adicionadas consecutivamente num processo denominado "convolução" com a finalidade de obter a vazão máxima.

A chuva efetiva "R" foi calculada em função da precipitação total "P", na duração da chuva, através da expressão utilizada pelo "Soil Conservation Service - Departament of Agriculture - USA" adaptada ao sistema métrico. A expressão adotada foi a seguinte:

$$R = (P-5080/N+50.8)^2 / (P+20320/N-203.2)$$

Onde:

R = precipitação, em mm;

P = precipitação total, em mm;

N = número representativo da curva do complexo solo-vegetação.

No quadro apresentado anteriormente para determinação do escoamento superficial "C" são apresentados conjuntamente os valores do número de deflúvio "CN" em relação complexo Solo-Vegetação e a orografia da região em estudo.

A influência da distribuição da chuva na área foi considerada, utilizando-se a relação chuva na área/chuva pontual, dada pela fórmula empírica abaixo, segundo a publicação "Práticas Hidrológicas", do Engo Jaime Taborga Torrico.

Onde:

P = precipitação média sobre a bacia

Po= precipitação pontual no centro de gravidade da bacia;

W = fator regional, tem função das relações chuva-área-tempo de duração (no Brasil:

W = 0,10)

A = área da bacia, em km2;

Ao= área base na qual P=Po (Ao=25 km2);

A distribuição da chuva ao longo do tempo foi adotada de acordo com a utilizada pelo "Soil Conservation Service - USA".

5.	PROJETO	

5.1 Projeto Geométrico

O projeto básico Geométrico foi desenvolvido a partir dos dados fornecidos pelos estudos topográficos, geotécnicos, hidrológicos e projeto de drenagem, está apresentado em planta e perfil, constante do volume 2, seguindo as recomendações contidas na IS-208 (Instrução de Serviço para Projeto Geométrico) do manual de diretrizes básica para elaboração de estudos e projetos rodoviários, onde constam os elementos necessários a definição do trecho.

A plataforma de terraplenagem a ser implantada atenderá a uma rodovia pavimentada com 7,00m de pista (3.50m para cada sentido de tráfego) e acostamento com 2,00m para cada sentido de tráfego, totalizando uma plataforma final de pavimentação de 11,0 m conforme seção tipo apresentado adiante.

Para este Lote, o segmento inicia no Entroncamento da BR-155, na cidade de Eldorado dos Carajás, com a estaca zero localizada neste entroncamento e finaliza na área urbana do município de Curionópolis no estaqueamento 1530 + 0,00 totalizando 30,6 Km de extensão.

Com base nos elementos oriundos dos estudos topográficos e das visitas em campo, procedeu-se aos ensaios das alternativas para o lançamento do greide da rodovia, levando-se em consideração as características técnicas e o seu enquadramento na classe III de acordo com o Manual de Projeto Geométrico do DNIT, para região ondulada a plana.

O greide foi projetado em função da plataforma existente e refere-se às cotas finais de terraplenagem, com o ponto de aplicação no eixo da pista. A plataforma terá inclinação para ambos os lados com 3% de declividade transversal.

> Projeto em Planta

A diretriz da pista a ser implantada / pavimentada coincide basicamente com a da pista existente.

Após a definição do posicionamento do eixo de implantação, passou-se ao desenvolvimento do projeto em planta, adotando-se os seguintes procedimentos:

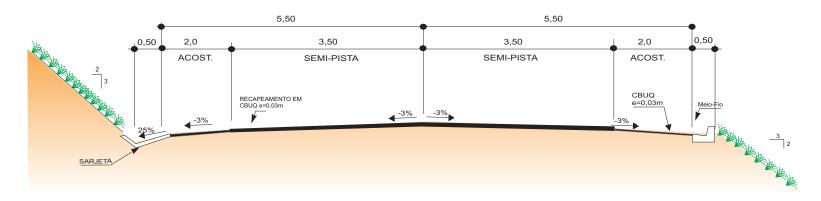
- Importação dos dados topográficos (coordenadas e cotas) da nuvem de pontos coletada das seções levantadas através da estação total;
- Lançamento da diretriz do novo traçado em planta na escala 1:2000 gerada dos serviços de exploração das tangentes;
- Definição das curvas horizontais pelo processo analítico;
- Todo processo foi realizado através da utilização de um software do tipo CAD denominado TopoGRAPH e AutoCAD.
- O Projeto Geométrico em planta consta do eixo da locação estaqueado de 20 em 20 metros e bordas da plataforma, obras de arte correntes e demais elementos de interesse do projeto.

> Características Técnicas

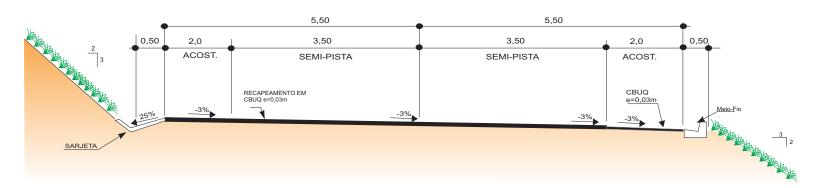
O projeto geométrico da rodovia se enquadrará nas seguintes características:

Velocidade Diretriz: 80 Km/h;Pista de Rolamento: 7,00 m;

• Largura do Acostamento: 2,00 / 2,00 m


Com relação à classificação orográfica, o terreno por onde se desenvolve a rodovia é caracterizado como ondulado.

> Apresentação dos Resultados


O Projeto Geométrico foi desenvolvido com base nos elementos fornecidos pelo Estudo Topográfico, que permitiram a elaboração do Projeto Geométrico em planta. Está apresentado no Volume 2 - Projeto básico de Execução, em tamanho A3.

A seção transversal-tipo está apresentada a seguir.

SEÇÃO EM TANGENTE

SEÇÃO EM CURVA

OBSERVAÇÃO:

1 - DIMENSÕES EM METRO.

GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN

RODOVIA: PA-275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km

QD

SEÇÃO TIPO PROJETO GEOMÉTRICO

5.2 Projeto de Terraplenagem

O projeto básico de Terraplenagem foi elaborado seguindo as recomendações contidas na IS-209 (Instruções de Serviço para Projeto de Terraplenagem) do manual de diretrizes básicas para elaboração de estudos e projetos rodoviários, subsidiado pelo projeto Geométrico e Estudos Geotécnicos, constatou-se a necessidade de materiais para execução dos aterros e a verificação "in loco" da drenagem do terrapleno existente na época de maiores precipitações pluviométricas.

• Elementos Básicos

Os elementos básicos utilizados para a elaboração deste projeto foram obtidos do projeto geométrico e dos estudos geotécnicos. O projeto geométrico forneceu informações que permitiram a determinação do volume de terraplenagem. Os estudos geotécnicos forneceram os elementos referentes à qualidade dos materiais existentes no subleito / terreno natural, através de suas características físico-mecânicas obtidas nos ensaios de laboratório, isso permitiu um conhecimento sobre os solos que constituirão os corpos de aterros, assim como, a definição dos locais de empréstimos.

Definições Básicas

Os elementos básicos empregados no projeto foram:

- ✓ Geometria do traçado em planta e greide definidos no projeto geométrico;
- ✓ Largura de plataforma (L) em função da espessura de pavimento (h):

Corte: L - 2h
 Aterro: L + 3h

- ✓ Inclinação da pista em tangente: 3%;
- ✓ Inclinação máxima em curva: 8%;

Geometria dos taludes ficou assim definida:

✓ Taludes de corte: inclinação: 3 (V): 2 (H);
 ✓ Taludes de aterro: inclinação: 2 (V): 3 (H).

Distribuição de Materiais

Nos quadros de distribuição de terra são figurados os resultados do balanço da distribuição dos materiais e o destino dos materiais escavados, conforme sua classificação, definindo o plano de execução de terraplenagem.

O grau mínimo de compactação a ser utilizado no corpo de aterro é de 95% do Proctor Normal e para o acabamento de terraplenagem é de 100% do Proctor Normal.

Na distribuição dos materiais foi adotado o fator de compactação igual a 1,30 em solo (material de 1ª categoria).

• Camada final do aterro e acabamento de terraplenagem

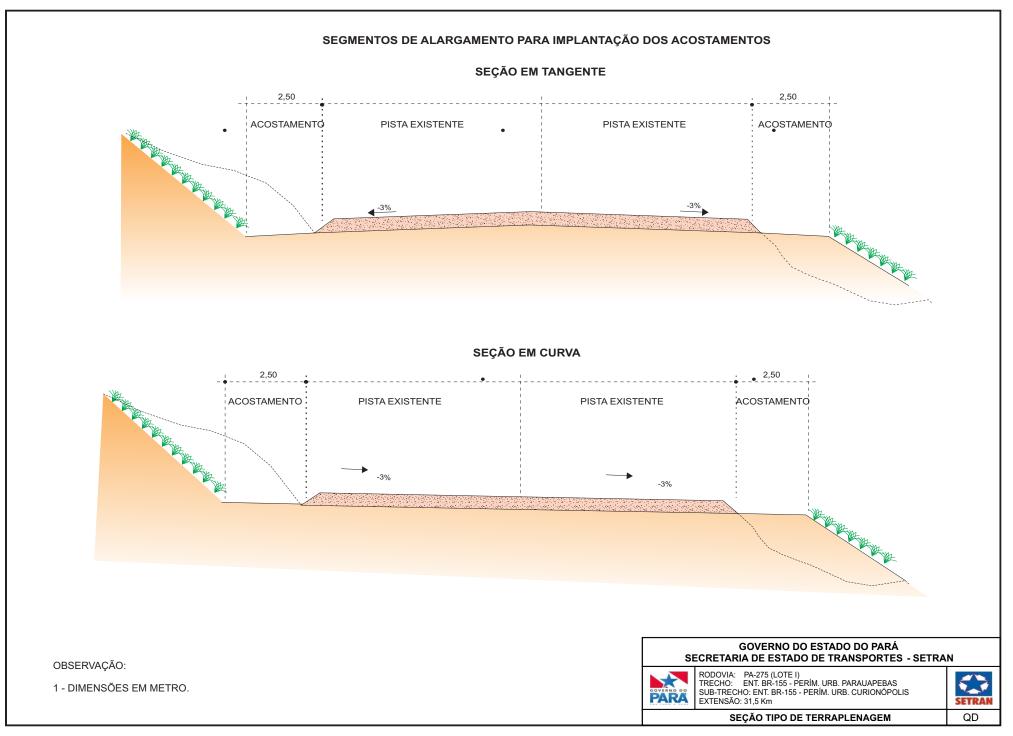
Todos os materiais destinados a camada final de aterro e acabamento de terraplenagem provém de escavações devidamente analisados que possuem características geotécnicas adequadas, isto se repete ao corpo de aterro.

Deverá ser procedida a compactação do acabamento de terraplenagem nos últimos 60 cm de aterro com energia de 100% do Proctor normal dividida em camadas de, no máximo 20 cm.

As distancias de transporte foram calculadas com base na posição do centro de gravidade dos maciços tornando-se a distância real definida pelas condições geométricas do perfil.

Foram também observadas na distribuição as características geotécnicas dos solos a serem empregados nos aterros, tendo em vista o valor do ISC (Índice Suporte Califórnia) de projeto adotado no dimensionamento do pavimento e a expansão dos materiais.

Movimento de Terras


Baseado no cálculo volumétrico dos cortes e aterros para modelagem do terreno natural e da superfície da nova plataforma da terraplenagem projetada, após a definição das superfícies, foram determinadas as áreas de corte e aterro e calculado os volumes geométricos, adotando-se um fator de empolamento de 30%.

O grau de compactação mínimo é de 95% para o corpo do aterro e de 100% para a última camada de terraplenagem.

Resultados Obtidos

O projeto de terraplenagem é apresentado no volume 2 – Projeto básico de execução constando de:

- Seção transversal-tipo de terraplenagem;
- Localização das áreas de empréstimo e jazidas;
- Roçada manual e limpeza mecanizada da faixa de construção;
- Remoção de solo mole;
- Localização e distribuição de material de terraplenagem;

Desmatamento, Destocamento e Limpeza de Árvores de Diâmetro até 0, Faixa de construção	,15 metros.			255.400,00 m ²
Roçada Manual				
Faixa de construção				10,22 ha
Origem do Material Escavado				
CORTE		EMPRÉSTIMO		TOTAL
0,000 m³		166.010,000 n	n³	166.010,000 m ³
Destino do Material Escavado				
ATERRO		BOTA-FORA		TOTAL
166.010,000 m³		0,000 n	n³	166.010,000 m ³
Distribuição do Material Escavado:				
Escavação Carga e Transporte Com DMT:	1ª Categoria	2ª Categoria	3ª Categoria	TOTAL
Até 5000m	166.010,000 m³	-	-	166010,000 m³
TOTAL	166.010,000 m³	-	-	166.010,000 m ³
Compactação de aterros:				
PROCTOR 95% DO NORMAL	0,000 m ³			
PROCTOR 100% DO NORMAL	127.700,000 m ³			
Remoção de Material solo mole (Bota Fora) (DMT = 0km a 10km) - m3				
Remoção de solo. (m³)	9.072,000 m ³			
Camada de drenagem para fundação de aterro com areia - m3				
Camada drenante (m³)	9.072,000 m ³			

RODOVIA: PA -275 (LOTE I)
TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS
SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS
EXTENSÃO: 31,5 Km

RESUMO DE DISTRIBUIÇÃO DE TERRAPLENAGEM

SEGN	IENTO		LIMPEZ	A LATE	RAL MANUA	L	SEGN	IENTO	LIMPEZA LATERAL MECANIZADA					
EST	ACA	EXTENSÃO	LARGURA	LADO	ÁREA	OBSERVAÇÃO	EST	ACA	EXTENSÃO	LARGURA	LADO	ÁREA	OBSERVAÇÃO	
INICIAL	FINAL	(m)	(m)	D/E	(m²)	OBSERVAÇAO	INICIAL	FINAL	(m)	(m)	D/E	(m²)	OBSERVAÇAO	
163 + 0,0	1440 + 0,0	25.540,00	2,00	D/E	102.160,00		163 + 0,0	1440 + 0,0	25.540,00	5,00	D/E	255.400,00		
					102.160,00									
			TOTA	\L	10,22	ha				TOTA	<u> </u> \L	255.400,00	m²	

RODOVIA: PA -275 (LOTE I)
TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS
SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS
EXTENSÃO: 31,5 Km

LIMPEZA DA FAIXA DE CONSTRUÇÃO

5.3 Projeto de Drenagem e Obras de Arte Corrente

O Projeto de Drenagem e Obras de Arte Correntes foi elaborado com o objetivo de dotar o trecho de um sistema de drenagem eficiente, capaz de suportar as precipitações pluviométricas incidentes na região.

O sistema de drenagem existente foi cadastrado e avaliado quanto a sua eficiência no local, procedendo-se, em escritório, a verificação da adequação hidráulica e estrutural de cada componente.

A necessidade da drenagem subterrânea foi definida "in loco", a partir das condições visuais e de observação do nível do lençol freático.

✓ Drenagem Superficial

O cadastro realizado em campo detectou que praticamente não existem dispositivos de drenagem superficial e existem algumas drenagens profundas ao longo do trecho que necessitam de substituição e/ou alargamentos. O sistema foi projetado, utilizando a metodologia do Manual de Drenagem de Rodovias, elaborado pelo DNIT no ano de 1990 e compreendeu os seguintes passos:

• Determinação da vazão de contribuição através do emprego do método racional, expresso pela seguinte fórmula:

$$Q = \frac{\text{CIA}}{3.6 \times 10^6}$$

Onde:

Q = vazão de contribuição, em m³/s;

C = coeficiente de deflúvio, adimensional;

I = intensidade de chuva, em mm/h;

A = área da bacia de contribuição, em m².

Critérios Adotados:

Para o coeficiente de deflúvio "C", considerado como representativo da parcela do volume precipitado que se transforma em escoamento superficial, foram adotados os valores indicados na tabela apresentada no quadro do Estudo Hidrológico;

Quando a área a ser drenada apresentou superfícies de diversas naturezas, adotou-se para o coeficiente de escoamento superficial a média ponderada dos valores de C, considerando como pesos a áreas correspondentes.

Então:
$$C1A1+C2A2+...+Cn.An$$
 $C = A1+A2+...+An$

Onde:

✓ C = coeficiente de escoamento médio;
 ✓ C1,C2,...,Cn = coeficientes de escoamento das áreas A1,A2,...An, respectivamente.

A intensidade de chuva "I" foi obtida para uma duração de 5 minutos e um período de recorrência de 10 anos;

As áreas de contribuição "A" foram definidas a partir das seções transversais tipo.

Dimensionamento hidráulico utilizando a fórmula de Manning e a equação da continuidade, conforme mostrado a seguir:

Equação da Continuidade: Q_a = A.V

Fórmula de Manning: $V = 1/n \times R^{2/3} \times I^{1/2}$

Onde:

• $Q_a = Vazão admissível, em m³/s;$

• A = Área molhada, em m^2

V = Velocidade de escoamento, em m/s;

 n = Coeficiente de rugosidade de Manning, adimensional, função do tipo de revestimento adotado (ver tabela apresentada nos quadros a seguir);

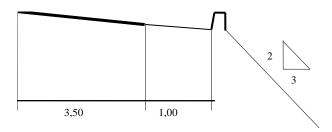
R = Raio hidráulico, em m;

I = Declividade longitudinal de instalação do dispositivo de drenagem.

Verificação da capacidade hidráulica através da comparação entre a vazão de contribuição e a vazão admissível, levando em consideração a velocidade máxima admissível para o tipo de revestimento adotado.

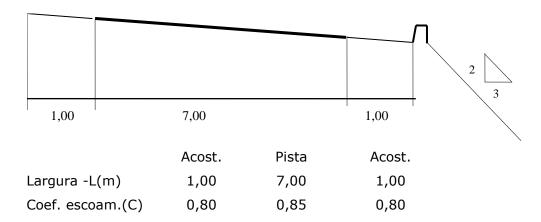
O objetivo do dimensionamento foi à definição do comprimento crítico de cada estrutura de drenagem, ou seja, o espaçamento máximo suportável por cada seção adotada, em função da sua declividade longitudinal.

Considerando-se que a forma, dimensões e revestimento dos dispositivos a adotar foram pré-estabelecidos, o dimensionamento consistiu em se determinar seus comprimentos críticos.

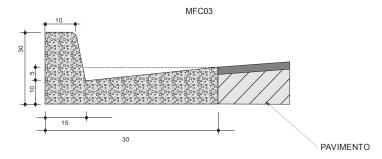

A seguir é apresentado o resultado obtido para as banquetas tipo meio fio de concreto – MFC-03. É importante salientar que os demais dispositivos envolvidos no sistema, tais como: entradas, descidas e saídas d'água, não foi objeto de dimensionamento, uma vez que as vazões solicitantes não possuem magnitude que os justifiquem.

a) Meios-Fios ou Banquetas

Para o cálculo do espaçamento máximo entre descidas d'água nas banquetas, foi utilizada a mesma metodologia adotada para o cálculo dos comprimentos máximos das sarjetas, exposta na letra a.


A seção de contribuição considerada para a banqueta foi à seguinte:

SEÇÃO EM TANGENTE



	Pista	Acost.
Largura -L(m)	3,50	1,00
Coef. escoam.(C)	0,85	0,80

SEÇÃO EM CURVA

Adotou-se banqueta do tipo MFC-03 do DNIT, apresentada a seguir, e um alagamento máximo de 1,00m no acostamento, para chuva com 10 anos de tempo de recorrência.

A expressão obtida para a distância máxima entre descidas d'água foi à seguinte:

$$d = 3.6 \times 10^{6} A R^{2/3} i^{1/2}$$
n C I L

- d = Distância entre descidas d'água, em m;
- A = Área molhada, em m²;
- R = Raio hidráulico, em m;

- i = Declividade longitudinal do greide, em m/m;
- n = Coeficiente de rugosidade, adimensional (n = 0.015);
- I = Intensidade de chuva p/ tc = 5 minutos e T_R = 10 anos,(I = 145,97mm/h);
- L = Largura da plataforma que contribui para a banqueta ($L_{tang} = 5,0m$, $L_{curva} = 10,0m$).

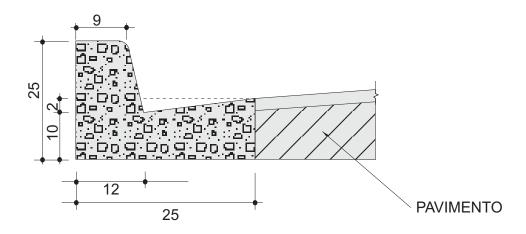
Considerando-se os valores de A e R, conforme o tipo de banqueta definida obteve-se os seguintes valores, em função da declividade do greide:

DECLIVIDADE DO GREIDE (%	0,5	1	2	3	4	5	6	
COMPRIMENTO MÁXIMO ENTRE	TANG	108	152	215	264	305	341	373
DESCIDAS D'ÁGUA (m)	CURVA	54	76	108	132	152	170	187
VELOCIDADE (m/s)		0,43	0,60	0,85	1,04	1,21	1,35	1,48

✓ Obras de Arte Correntes

Para estes dispositivos, o cadastro realizado "in loco" verificou a necessidade de implantação de bueiros simples, duplos e triplos tubulares de concreto, com diâmetros de 1,00m.

O critério adotado neste projeto foi o de distribuir os novos bueiros em função da plataforma de pavimentação, sendo que foi adotado o diâmetro de 1,00m para os bueiros tubulares objetivando facilitar a limpeza e vazão.


✓ Dimensionamento das Obras como Canal

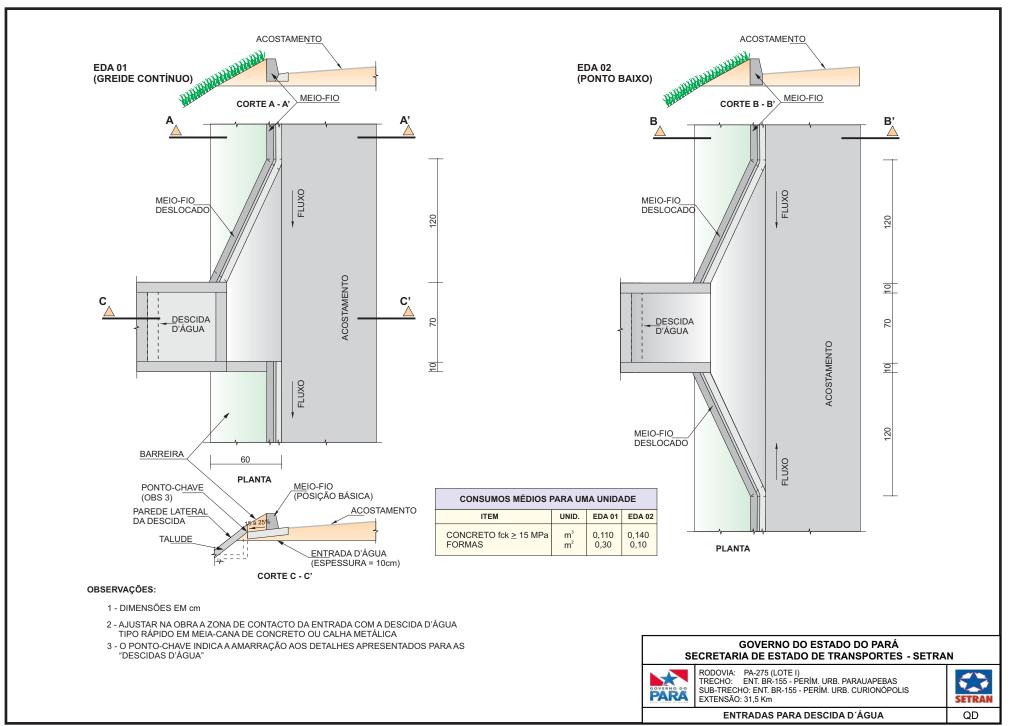
Hidraulicamente falando, as obras foram dimensionadas como canal, para um tempo de recorrência de 15 anos, evitando que elas trabalhem com carga a montante, o que pode ocasionar danos ao corpo estradal ou possibilidade de ocorrência de inundações na região.

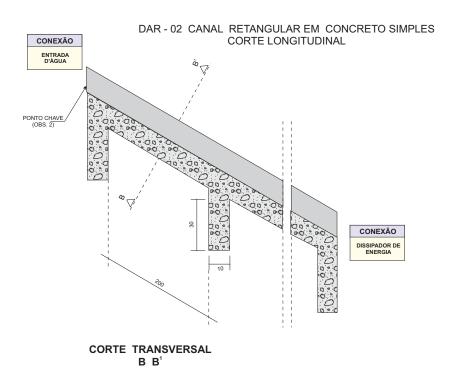
Desta forma, a metodologia adotada baseou-se na teoria do escoamento crítico, na qual a energia específica mínima é tomada como sendo igual à altura do bueiro.

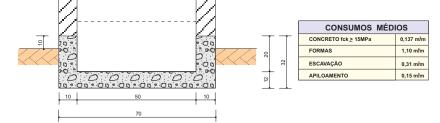
Entre os regimes de fluxos possíveis de ocorrer (crítico, rápido e subcrítico), optou-se pela adoção do fluxo crítico.

MFC03

CONSUMO MÉDIO											
ESCAVAÇÃO	$\leq 0.05 \text{ m}^3/\text{m}$										
CONCRETO f _{ck} ≥ 15MPa	0,058 m³/m										
FORMAS DE MADEIRA COMUM	0,56 m²/m										


GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN

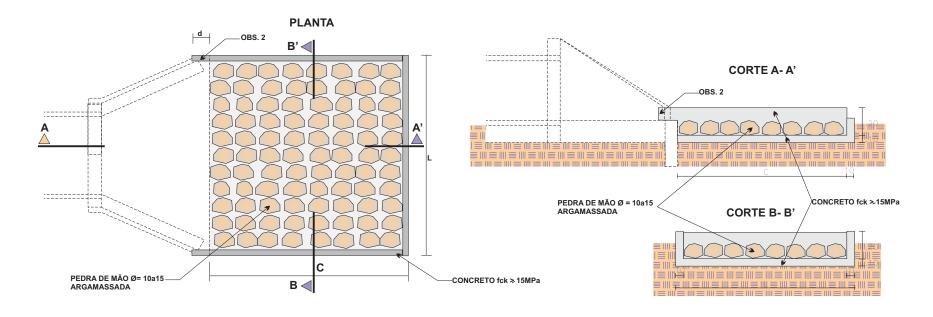



RODOVIA: PA-275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km

MEIO-FIO DE CONCRETO - TIPO MFC-03

- 1 DIMENÇÕES EM cm.
- 2 O PONTO-CHAVE INDICA A AMARRAÇÃO AOS DETALHES APRESENTADOS PARA AS "ENTRADAS D'ÁGUA".
- 3 EXECUTAR JUNTAS DE DILATAÇÃO A INTERVALOS MÁXIMOS DE 10m SEGUNDO O TALUDE, TOMANDO-AS COM CÍMENTO ASFÁLTICOS.

GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN



RODOVIA: PA-275 (LOTE I)
TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS
SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS
EXTENSÃO: 31,5 Km

DESCIDA D'AGUA DE ATERROS TIPO RÁPIDO

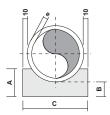
DISSIPADORES DE ENERGIA

	DIMENSÕES E CONSUMOS MÉDIOS PARA UMA UNIDADE														
TIPO	TIPO ADAPTÁVEL EM C L d e CONCRETO FORMAS PEDRA AGGAMASSADA (m³) (m³) (m³)														
DEB 01															
DEB 02	BSTC Ø=0.60-DAD	240	242	30	15	0,799	5,15	1,53	1,97	0,30					
DEB 03	BSTC Ø=0.80-DAD	320	293	35	20	1,258	7,42	2,53	3,09	0,40					
DEB 04	BSTC Ø=1.00-DAD	400	345	40	25	1,820	10,05	3,80	4,49	0,50					

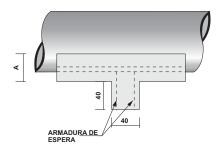
OBSERVAÇÕES:

- 1 DIMENSÕES EM cm
- 2 NA CONEXÃO COM AS DESCIDAS D'ÁGUA NÃO SÃO NECESSÁRIAS AS PEQUENAS ALAS, INDICADAS NO DESENHO.

GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN

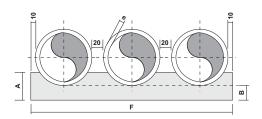


RODOVIA: PA-275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km



DISSIPADORES DE ENERGIA

BERÇOS


VISTA LATERAL

QU	QUADROS DE DIMENSÕES (cm)														
DIÂMETRO A B C E F e															
60	34	15	96	-	-	8									
80	45	20	120	-	-	10									
100	56	25	144	288	432	12									
120	67	30	166	332	498	13									
150	83	38	198	396	594	14									

▼	20	<u>m</u>
	E	

	QUANTIDADES UNITÁRIAS DOS DENTES														
DIÂMETRO															
(cm)	CONCRETO	ARMADURA	CONCRETO	ARMADURA	CONCRETO	ARMADURA									
	(m³)	(kg)	(m³)	(kg)	(m³)	(kg)									
60	0,154	1,008	-	-	-	-									
80	0,192	1,386	-	-	-	-									
100	0,230	1,512	0,461	3,024	0,691	3,780									
120	0,266	1,638	0,531	3,276	0,797	4,914									
150	0,317	2,759	0,634	4,599	0,950	6,439									

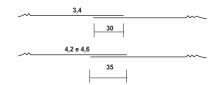
	QUAN	TIDADES F	OR METRO	LINEAR D	E BERÇO	
DIÂMETRO	SIMF	LES	DUF	PLO	TRIF	PLO
(cm)	CONCRETO	FORMA	CONCRETO	FORMA	CONCRETO	FORMA
	(m³)	(m ²)	(m³)	(m²)	(m ³)	(m²)
60	0,238	0,68	-	-	-	-
80	0,386	0,90	-	-	-	-
100	0,570	1,12	1,141	1,12	1,711	1,12
120	0,785	1,34	1,570	1,34	2,355	1,34
150	1,157	1,66	2,314	1,66	3,471	1,66

OBSERVAÇÕES:

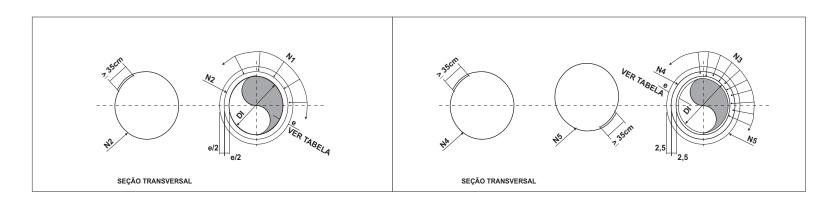
- 1 OS DENTES DEVERÃO SER CONSTRUÍDOS EM TODOS OS BUEIROS CUJA DECLIVIDADE DE INSTALAÇÃO FOR SUPERIOR A 5% E SER ESPAÇADOS DE CINCO EM CINCO METROS NA PROJEÇÃO HORIZONTAL
- 2 TODOS OS BUEIROS SERÃO EXECUTADOS COM BERÇOS 3 NOS DENTES SERÃO COLOCADAS ARMADURAS DE ESPERA: 2ø 10mm A CADA 100 COM COMPRIMENTO DE B+35
- 4 UTILIZAR NOS BERÇOS CONCRETO CICLÓPICO fck ≥ 15 MPa
- 5 DIMENSÕES EM cm

GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN

RODOVIA: PA-275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km



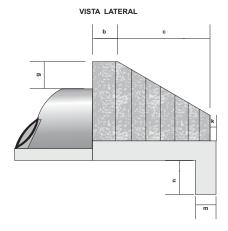
BERÇOS E DENTES PARA ASSENTAMENTO DE BUEIRO

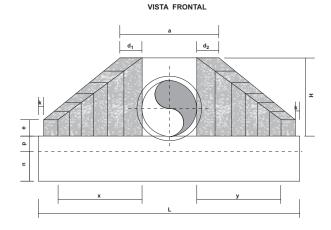

	TABELAS DE ARMADURAS (POR METRO DE TUBO)															O DE	TUB	0)									
	TUBOS TIPO CA-1 (ABNT) TUBOS TIPO CA-2 (ABNT)															TUBOS TIPO CA-3 (ABNT)							BOS TI	PO CA	-3 (AB	NT)	
FORI	FORMAS ARMADURAS (CA-60B) FORMAS ARMADURAS (CA-60B)										B)	FORMAS ARMADURAS (CA-60B)					B)	FORMAS ARMADURAS (CA-60B)				B)					
DI(cm)	e (cm)	N	ø	ESP.	Q.	COMP.	DI(cm)	e (cm)	N	ø	ESP.	Q.	COMP.	DI(cm)	e (cm)	N	ø	ESP.	Q.	COMP.	DI(cm)	e (cm)	N	ø	ESP.	Q.	COMP.
		1	3,4	15	14	Corr.			1	3,4	15	14	Corr.			3	3,4	15	29	Corr.			3	3,4	15	29	Corr.
60	8	2	4.6	10	10	240	60	8	2	5.0	9	11	240	60	8	4	5,0	10	10	260	60	8	4	6,0	10	10	260
			4,0	10	10	240				5,0	9	11	240			5	5,0	10	10	240			5	6,0	10	10	240
		1	3,4	15	18	Corr.			1	4,2	20	14	Corr.			3	4,2	20	28	Corr.			3	4,2	20	28	Corr.
80	10	2	5.0	10	10	315	80	10	2	6.0	9	11	315	80	10	4	6,0	10	10	335	80	10	4	7,0	11	9	335
										.,.					-	5	6,0	10	10	305			5	7,0	11	9	305
		3	3,4	15	46	Corr.			3	4,2	20	35	Corr.			3	4,2	20	35	Corr.			3	4,6	20	35	Corr.
100	12	4	4,6	10	10	405	100	12	4	6,0	12	8	405	100	12	4	6,0	9	11	405	100	12	4	7,0	9	11	405
		5	4,6	10	10	365			5	6,0	12	8	365			5	6,0	9	11	365			5	7,0	9	11	365
		3	3,4	15	56	Corr.			3	4,2	20	42	Corr.			3	4,6	20	42	Corr.			3	4,6	20	42	Corr.
120	13	4	5,0	10	10	475	120	13	4	6,0	9	11	475	120	13	4	7,0	9	11	475	120	13	4	8,0	9	11	475
		5	5,0	10	10	425			5	6,0	9	11	425			5	7,0	9	11	425			5	8,0	9	11	425
		3	4,2	20	51	Corr.			3	4,6	20	51	Corr.			3	4,6	20	51	Corr.			3	4,6	20	51	Corr.
150	14	4	6,0	10	10	580	150	14	4	7,0	9	11	580	150	14	4	8,0	8	12	580 150	150	14	4	8,0	6	16	580
		5	6,0	10	10	520			5	7,0	9	11	520			5	8,0	8	12	520			5	8,0	6	16	520

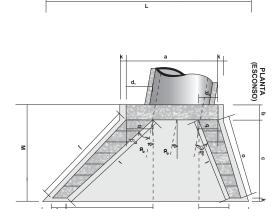
fck ≥ 15 MPa AÇO CA - 60 B

DET. DE EMENDA (EMENDAR EM POSIÇÕES DIFERENTES)

		CA-1 (A	LTURA DE A	TERRO) 1,0	à <u>≤</u> 3,5m				CA-2	(ALTURA DE	ATERRO)	< 5,0m		CA-3 (ALTURA DE ATERRO) ≤ 7,0m							CA-4 (ALTURA DE ATERRO) ≤ 8,5m							
	RESUMO DE AÇO RESUMO DE AÇO												RESUMO DE AÇO										RESUMO	DE AÇO				
BITO	DLA	60	80	100	120	150	BITC	LA	60	80	100	120	150	BITC	LA	60	80	100	120	150	BITO	LA	60	80	100	120	150	
ø	kg/m	PESO (kg)	PESO (kg)	PESO (kg)	PESO (kg)	PESO (kg)	ø	kg/m	PESO (kg)	PESO (kg)	PESO (kg)	PESO (kg)	PESO (kg)	ø	kg/m	PESO (kg)	ø	kg/m	PESO (kg)									
3,4	0,071	1	1	4	4	-	3,4	0,071	1	-	-	-		3,4	0,071	2	-	-	-	-	3,4	0,071	2	-	-	-	-	
4,2	0,109	-	-	-	-	6	4,2	0,109	-	2	4	5		4,2	0,109	-	3	4	-	-	4,2	0,109	-	3	-	-	-	
4,6	0,130	3	-	10	-	-	4,6	0,130	-	-	-	-	7	4,6	0,130	-	-	-	6	7	4,6	0,130	-	-	5	6	7	
5,0	0,154	-	5	-	14	-	5,0	0,154	4	-	-	-		5,0	0,154	8	-	-	-	-	6,0	0,222	11	-	-	-	-	
6,0	0,222	-	-	-	-	24	6,0	0,222	-	8	14	22	-	6,0	0,222	-	14	19	-		7,0	0,302	-	17	26	-	-	
							7,0	0,302	-	-	-	-	37	7,0	0,302	-	-	-	30	-	8,0	0,393	-	-	-	39	69	
														8,0	0,393	-	-	-	-	52								
TOT	AIS	4	6	14	18	30	TOT	AIS	5	10	18	27	44	TOT	TAIS	10	17	23	36	59	TOTA	AIS	13	20	31	45	76	


GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN

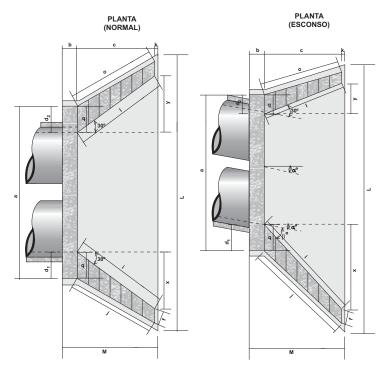


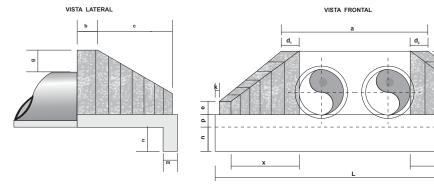

RODOVIA: PA-275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km

SEÇÃO TRANSVERSAL DE BUEIRO

								DI	MEN	SÕES	E CC	NSU	MOS I	ИÉDIO	OS PA	RA U	MA U	NIDA	DE						
ESC α°	β°	а	b	С	d ₁	d ₂	е	f	g	h	i	j	k	I	m	n	0	р	q	х	у	L	М	FORMAS (m²)	CONCRETO (m³)
										В	UEIR	O SIN	IPLES	TUB	ULAR	ø=	60								
0	30	106	20	125	23	23	15	10	30	98	144	133	10	144	20	30	133	23	20	72	72	242	155	7,45	1,153
20	25	130	20	125	35	26	15	10	30	98	218	190	10	125	20	30	125	23	20	179	0	283	155	8,71	1,370
50	20	168	20	125	47	36	15	10	30	98	296	253	10	129	20	30	135	23	20	268	-33	353	155	10,68	1,722
	BUEIRO SIMPLES TUBULAR Ø= 80																								
0	30	138	25	145	29	29	20	15	30	120	167	153	10	167	25	35	153	30	25	84	84	293	180	11,17	2,140
10	30	144	25	145	35	26	20	15	30	120	205	180	10	150	25	35	144	30	25	145	39	312	180	11,73	2,262
20	25	167	25	145	44	31	20	15	30	120	253	218	10	145	25	35	145	30	25	207	0	343	180	13,03	2,538
35	20	216	25	145	59	44	20	15	30	120	343	290	10	150	25	35	157	30	25	311	-39	426	180	15,97	3,188
										В	JEIRO	SIM	PLES	TUB	JLAR	Ø= 1	100								
0	30	170	30	165	35	35	25	20	30	142	191	174	10	191	30	40	174	37	30	95	95	345	205	15,68	3,567
10	30	177	30	165	42	31	25	20	30	142	233	203	10	171	30	40	163	37	30	165	44	366	205	16,41	3,757
20	25	203	30	165	52	36	25	20	30	142	288	245	10	165	30	40	165	37	30	236	0	403	205	18,19	4,205
45	20	264	30	165	71	52	25	20	30	142	390	326	10	171	30	40	179	37	30	354	-44	499	205	22,30	5,293

- 1 DIMENSÕES EM cm 2 UTILIZAR CONCRETO CICLÓPICO fok ≥ 15 MPa 3 UTILIZAR PREFERENCIALMENTE BOCAS NORMAIS PARA BUEIROS ESCONSOS AJUSTANDO O TALUDE DE ATERRO ÀS ALAS E/OU PROLONGANDO O CORPO DE BUEIRO


GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN



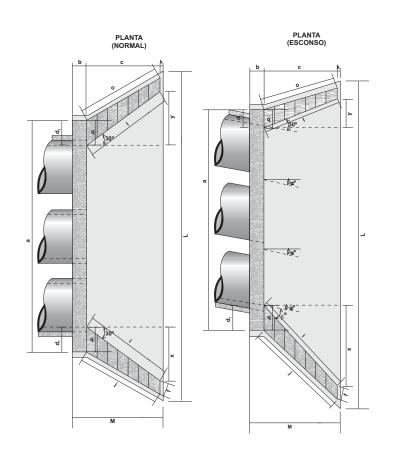
RODOVIA: PA-275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km

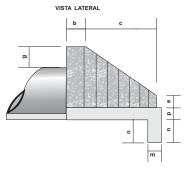
QD

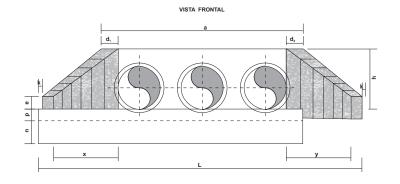
BUEIRO SIMPLES TUBULAR DE CONCRETO BOCAS NORMAIS E ESCONSAS

								DI	MENS	SÕES	E CC	NSU	nos i	/IÉDIC	S PA	RA U	MA U	NIDA	DE						
ESC α°	β°	а	b	С	d ₁	d ₂	е	f	g	h	i	j	k	1	m	n	0	р	q	х	у	L	М	FORMAS (m²)	CONCRETO (m³)
										В	UEIR	O DU	PLO.	гиви	LAR	Ø= 10	00								
0	30	314	30	165	35	35	30	20	30	142	191	174	10	191	30	40	174	37	30	95	95	489	205	21,08	5,106
15	30	326	30	165	42	31	30	20	30	142	233	203	10	171	30	40	163	37	30	165	44	515	205	22,00	5,350
30	25	370	30	165	52	36	30	20	30	142	288	245	10	165	30	40	165	37	30	236	0	569	205	24,45	5,987
45	20	468	30	165	71	52	30	20	30	142	390	326	10	171	30	40	179	37	30	354	-44	702	205	29,94	7,470
	45 20 468 30 165 71 52 30 20 30 142 390 326 10 171 30 40 179 37 30 354 44 702 205 29,94 7,470 BUEIRO DUPLO TUBULAR Ø=120																								
0	30	366	40	180	40	40	35	25	30	163	208	188	10	208	40	45	188	43	35	104	104	557	230	27,75	7,889
15	30	382	40	180	50	36	35	25	30	163	255	220	10	186	40	45	177	43	35	180	48	586	230	28,99	8,289
30	25	434	40	180	61	43	35	25	30	163	314	264	10	180	40	45	180	43	35	257	0	647	230	32,17	9,285
45	20	550	40	180	83	63	35	25	30	163	426	351	10	186	40	45	196	43	35	386	-48	797	230	39,35	11,607
										В	UEIR	O DU	PLO .	гиви	LAR	Ø= 15	50								
0	30	440	50	260	46	46	35	30	30	194	300	277	10	300	40	45	277	52	40	150	150	720	320	42,14	15,138
15	30	458	50	260	57	41	35	30	30	194	368	328	10	269	40	45	258	52	40	260	70	760	320	44,09	15,912
30	25	522	50	260	70	50	35	30	30	194	453	396	10	260	40	45	260	52	40	371	0	841	320	49,06	17,876
45	20	662	50	260	95	75	35	30	30	194	615	530	10	269	40	45	280	52	40	558	-70	1042	320	60,18	22,422

- 1 DIMENSÕES EM cm
- 2 UTILIZAR CONCRETO CICLÓPICO fck ≥ 15 MPa
 3 UTILIZAR PREFERENCIALMENTE BOCAS NORMAIS PARA BUEIROS ESCONSOS
 AJUSTANDO O TALUDE DE ATERRO ÀS ALAS E/OU PROLONGANDO O CORPO DE BUEIRO


GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN




RODOVIA: PA-275 (LOTE I)
TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS
SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km

QD

BUEIRO DUPLO TUBULAR DE CONCRETO BOCAS NORMAIS E ESCONSAS

								DI	MENS	SÕES	E CO	NSU	IOS I	/ÉDIC	S PA	RA U	MA U	NIDAI	DE						
ESC	β°	а	b	С	d ₁	d ₂	е	f	g	h	i	j	k	1	m	n	0	р	q	х	у	L	М	FORMAS (m²)	CONCRETO (m³)
	BUEIRO TRIPLO TUBULAR Ø= 100 0 30 458 30 165 35 35 35 20 30 142 191 174 10 191 30 40 174 37 30 95 95 633 205 26,48 6,645																								
15	30	475	30	165	42	31	35	20	30	142	233	203	10	171	30	40	163	37	30	165	44	664	205	27,59	6,942
30	25	536	30	165	52	36	35	20	30	142	288	245	10	165	30	40	165	37	30	236	0	736	205	30,68	7,766
45	20	672	30	165	71	52	35	20	30	142	390	326	10	171	30	40	179	37	30	354	-44	906	205	37,59	9,653
0	30	532	40	180	40	40	40	25	30	163	208	188	10	208	40	45	188	43	35	104	104	723	230	34,84	10,272
15	30	554	40	180	50	36	40	25	30	163	255	220	10	186	40	45	177	43	35	180	48	758	230	36,35	10,759
30	25	626	40	180	61	43	40	25	30	163	314	264	10	180	40	45	180	43	35	257	0	838	230	40,37	12,037
45	20	785	40	180	83	63	40	25	30	163	426	351	10	186	40	45	196	43	35	386	-48	1032	230	49,39	14,983
										В	UEIR	O TRI	PLO T	гиви	LAR	Ø= 1	50								
0	30	638	50	260	46	46	40	30	30	194	300	277	10	300	40	45	277	52	40	150	150	918	320	52,07	19,516
15	30	663	50	260	57	41	40	30	30	194	368	328	10	269	40	45	258	52	40	260	70	965	320	54,37	20,446
30	25	750	50	260	70	50	40	30	30	194	453	396	10	260	40	45	260	52	40	371	0	1069	320	60,48	22,915
45	20	942	50	260	95	75	40	30	30	194	615	530	10	269	40	45	280	52	40	558	-70	1322	320	74,22	28,616

- 1 DIMENSÕES EM cm
- 2 UTILIZAR CONCRETO CICLÓPICO fck ≥ 15 MPa
- 3 UTILIZAR PREFERENCIALMENTE BOCAS NORMAIS PARA BUEIROS ESCONSOS AJUSTANDO O TALUDE DE ATERRO ÀS ALAS E/OU PROLONGANDO O CORPO DE BUEIRO

GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN

RODOVIA: PA-275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km

SETRAN QD

BUEIRO TRIPLO TUBULAR DE CONCRETO BOCAS NORMAIS E ESCONSAS

5.4 Projeto de pavimentação

O Projeto Básico de Pavimentação foi desenvolvido visando à concepção e o dimensionamento das estruturas dos pavimentos novos a serem implantados e também os segmentos de restauração com a intenção de torna-los capazes de suportar a atuação das cargas do tráfego, através da indicação das espessuras das camadas constituintes e materiais a serem empregados.

O projeto foi desenvolvido a partir dos elementos levantados pelos Estudos Geotécnicos, contemplando basicamente as seguintes atividades:

- Caracterização geométrica e geotécnica através da realização de sondagens a pá e picareta/trado e ensaios rotineiros, de campo e em laboratório, com os materiais integrantes do subleito;
- Pesquisa, identificação e estudos de ocorrências de materiais (jazidas de materiais granulares, areais e pedreiras) para emprego nos serviços de reabilitação do pavimento da pista de rolamento e acostamentos.

Dimensionamento dos Pavimentos Novos

Foram utilizados os métodos do DNIT e da Resiliência para Pavimentos Novos, constantes do Manual de Pavimentação do DNIT, edição de 2006, Publicação IPR-719.

Para o desenvolvimento do Projeto de Pavimentação, os seguintes tópicos serão abordados:

- Elementos básicos para o desenvolvimento;
- Dimensionamento do pavimento;
- Acostamentos;

> Elementos Básicos para o Dimensionamento

Os elementos básicos considerados para o desenvolvimento do Projeto de Pavimentação foram fornecidos pelo Estudo Geotécnico, Projeto Geométrico e Projeto de Terraplenagem, conforme o relatado a seguir.

Dimensionamento de Pavimento

✓ Considerações Gerais sobre a Metodologia do DNER

O método tem como base o trabalho "Design of Flexible Pavements Considering Mixed Loads and Traffic Volume", da autoria de W. J. Turnbull, C. R. Foster e R. G. Alvin, do Corpo de Engenheiros do Exército dos EE.UU. e conclusões obtidas na pista experimental da AASHTO. Relativamente aos materiais integrantes do pavimento, são adotados coeficientes de equivalência estrutural tomando por base os resultados obtidos na Pista Experimental da AASHTO, com modificações julgadas oportunas.

A capacidade de suporte do subleito e dos materiais constituintes dos pavimentos é feita pelo CBR, adotando-se o método de ensaio preconizado pelo DNER, em corpos de prova indeformados ou moldados em laboratório para as conclusões de massa específica aparente e umidade especificada para o serviço.

O método determina algumas restrições para utilização dos materiais componentes do subleito e das camadas do pavimento, a saber:

- Os materiais do subleito devem apresentar uma expansão, medida no ensaio CBR, menor ou igual a 2% e um CBR ≥ 2%
- Para os materiais constituintes da sub-base, as exigências são:
 - CBR ≥ 20%
 - I.G. = 0
 - Expansão ≤ 1% (medida com sobrecarga de 10 lbs).
- Os materiais da base devem apresentar:
 - CBR ≥ 60% (N≤5x106);
 - Expansão ≤ 0,5% (medida com sobrecarga de 10 lbs);
 - Limite de liquidez ≤ 25%;
 - Índice de plasticidade ≤ 6%;
 - Enquadramento nas faixas granulométricas A, B, C, D, E OU F mostradas no Manual de Pavimentação, (IPR-719).

Algumas flexibilizações são permitidas para os materiais constituintes da base, a saber:

- Caso o limite de liquidez seja superior a 25% e/ou índice de plasticidade seja superior a 6%, o material pode ser empregado em base (satisfeitas às demais condições), desde que o equivalente de areia seja superior a 30.
- Para um número de repetições do eixo padrão durante o período de projeto inferior a 5×10^6 , podem ser empregados materiais com CBR $\geq 60\%$ e que se enquadrem nas faixas granulométricas E e F, mostradas no citado Manual.

Outras exigências são feitas para os materiais de base, quais sejam:

- A fração que passa na peneira nº 200 deve ser inferior a 2/3 da fração que passa na peneira nº 40.
- A fração graúda deve apresentar um desgaste Los Angeles igual ou inferior a 50. O método abre exceção para uso de material que apresente um desgaste maior, porém, com comprovada experiência no seu uso.

A estrutura constituída por esses materiais deverá ser dimensionada para proteção de subleito de ações de uma carga representada pelo número de repetições de um eixo padrão de 8,2 t (18.000 lbs). A determinação desta carga utiliza os seguintes parâmetros:

- Número N Número de repetições da carga de um eixo padrão de 8,2 t (18.000 lbs) na faixa de projeto;
- P Período de projeto, em anos;
- Vm Volume médio diário de tráfego durante o período P de projeto, na faixa de tráfego de projeto;
- FE Fator de eixos que reflete o número médio de eixos da frota de tráfego, ou seja, é um fator que multiplicado pelo número de veículos dá o número de eixos correspondentes;
- F.C. Fator de equivalência de carga, ou seja, é um fator que transforma a carga de um determinado eixo no equivalente de carga do eixo padrão de 8,2 t. Os fatores de conversão utilizados pelo método baseiam-se nas equivalências da USACE;
- FV = (FE x FC) Fator de veículos que é a resultante da multiplicação do número de eixos pela equivalência de carga desses eixos em relação ao eixo padrão, ou seja, é um número que, multiplicado pelo número de veículos que operam, dá diretamente o número equivalente ao eixo padrão;
- FR Fator Climático Regional Para levar em conta as variações de umidade dos materiais do pavimento durante as diversas estações do ano (e que traduz em variações de capacidade de suporte dos materiais) o número equivalente de operações do eixo padrão ou parâmetro de tráfego, N, deve ser multiplicado por um coeficiente (F.R.) que, na pista experimental da AASHTO variou de 0,2 a 5,0. Porém, no Brasil, em função das pesquisas desenvolvidas pelo IPR/DNER, tem-se adotado um FR = 1,0.

O número N, então, é dado pela expressão:

$$N = 365 \times Vm \times P \times FV \times FR$$

O método também introduz o conceito do Coeficiente de Equivalência Estrutural, que representa em termos estruturais, as diferenças equivalentes entre diferentes tipos de materiais usualmente utilizados para pavimentação e uma base granular.

Os coeficientes estruturais são a seguir mostrados:

COMPONENTES DO PAVIMENTO	COEFICIENTE
– Base ou Revestimento de Concreto Betuminoso	2,00
– Base ou Revestimento Pré-Misturado a quente de Graduação Densa	1,70
– Base ou Revestimento Pré-Misturado a frio de Graduação Densa	1,40
– Base ou Revestimento Betuminoso por Penetração	1,20
– Camadas Granulares	1,00
Solo-Cimento com Resistência a Compressão aos 7 dias superior	a:
→ 45 Kg/cm²	1,70
→ 28 Kg/cm²	1,40
→ 21 Kg/cm²	1,20

Após a introdução desses parâmetros e conceitos, o método demonstra a seqüência de dimensionamento das diversas camadas componentes do pavimento, a saber:

• Espessura mínima de revestimento

ESPESSURA MÍNIMA DE REVESTIMENTO BETUMINOSO	N
– Tratamentos Superficiais Betuminosos	N ≤ 10 ⁶
– Revestimento Betuminoso com 5,0 cm de espessura	$10^6 < N \le 5x10^6$
– Concreto Betuminoso com 7,5 cm de espessura	$5x10^6 < N \le 10^7$
– Concreto Betuminoso com 10,0 cm de espessura	$10^7 < N \le 5 \times 10^7$
– Concreto Betuminoso com 12,5 cm de espessura	N > 5x10 ⁷

• Demais camadas do pavimento

O método baseia-se em um gráfico constante do Manual de Pavimentação – 2006, em que se obtêm as espessuras em função do número N e do CBR.

Inicialmente, determina-se a espessura do revestimento conforme tabela mostrada anteriormente. Com a utilização do gráfico obtém-se a espessura necessária em termos de base granular para proteção de sub-base. Para tanto, estipula-se que o CBR da sub-base é de 20%, mesmo que esse valor ultrapasse esse número.

Ter-se-ia, então:

Espessura do revestimento (R) x coeficiente estrutural do revestimento (KR) + espessura em termos granulares da base (B) x coeficiente estrutural da base (KB) \geq Espessura encontrada no gráfico para um CBR de 20% e o número N de projeto (H20), ou seja:

Com a resolução dessa inequação, obtém-se o valor mínimo da espessura da base, uma vez que os demais parâmetros são conhecidos.

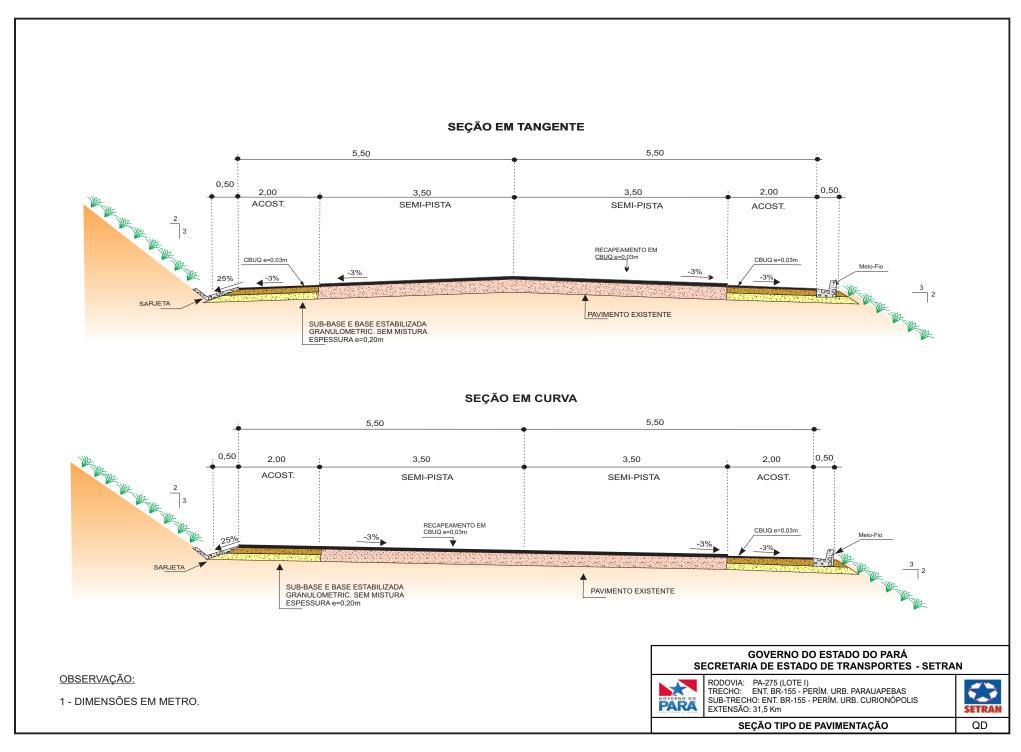
Para a obtenção da espessura mínima da sub-base, verifica-se no gráfico qual a espessura necessária para proteger o subleito, que apresenta um valor n de CBR (Hn), desde que seja superior a 2% e resolve-se a inequação:

Pode-se optar, também, por introduzir uma camada de reforço do subleito; desta forma, a espessura mínima da sub-base seria determinada pelo CBR do reforço do subleito e a espessura

mínima dessa camada seria determinada em função da espessura mínima necessária para proteger um subleito que apresenta um valor de CBR, n através da expressão:

Acostamentos

Conforme o Manual de Pavimentação – 2006, não se pode dispor de dados seguros para o dimensionamento dos acostamentos, sendo que sua espessura está condicionada a da pista de rolamento, podendo ser feita reduções de espessura, praticamente apenas na camada de revestimento. A solicitação de cargas é diferente e pode haver solução estrutural diversa da pista de rolamento.


A adoção nos acostamentos da mesma estrutura da pista de rolamento tem efeitos benéficos no comportamento desta última e simplifica os problemas de drenagem. Geralmente, na parte correspondente às camadas de reforço e sub-base, adota-se, para acostamento e pista de rolamento, a mesma solução, procedendo-se de modo idêntico para a parte correspondente à camada de base, quando o custo desta camada não é muito elevado. O revestimento dos acostamentos pode ser, sempre, de categoria inferior ao da pista de rolamento.

Quando a camada de base é de custo elevado, pode-se dar uma solução de menor custo para os acostamentos.

Algumas sugestões têm sido apontadas para a solução do problema elencado, como:

- a. Adoção, nos acostamentos, na parte correspondente à camada de base, de materiais próprios para sub-base granular de excepcional qualidade, incluindo solos modificados por cimento, cal, etc.
- b. Consideração, para efeito de escolha de revestimento, de um tráfego nos acostamentos da ordem de, até 1% do tráfego na pista de rolamento.

A seguir está apresentado seção tipo e quadro referente ao dimensionamento do pavimento.

	LOCALI	ZAÇÃO	ı			DIM	ENSÕES			TAPA BURACO		SIÇÃO PIST <i>A</i>			MATER	IAL BETUM	INOSO	
	EST	1 CA		EXTENSÃO	LARGURA	ESP.	ÁREA	VOLUME	DENSIDADE	QUANTIDADE		LADO		MATERIAL	LIGANTE	TAXA DE	UND	QUANT.
	EST	ACA		(m)	(m)	(m)	(m ²)	(m ³)	(t/m ³)	(t)	ESQ.	EIXO	DIR.	MATERIAL	LIGANTE	APLIC. (%)	UND	QUANT.
38	+ 0,0	100	+ 0,0	1.240,00		0,10	80,00	8,00	2,40	19,20				CBUQ	CAP-20	6,0	t	1,15
100	+ 0,0	150	+ 0,0	1.000,00		0,10	50,00	5,00	2,40	12,00				CBUQ	CAP-20	6,0	t	0,72
250	+ 0,0	300	+ 0,0	1.000,00		0,10	50,00	5,00	2,40	12,00				CBUQ	CAP-20	6,0	t	0,72
300	+ 0,0	350	+ 0,0	1.000,00		0,10	50,00	5,00	2,40	12,00				CBUQ	CAP-20	6,0	t	0,72
350	+ 0,0	400	+ 0,0	1.000,00		0,10	20,00	2,00	2,40	4,80				CBUQ	CAP-20	6,0	t	0,29
400	+ 0,0	450	+ 0,0	1.000,00		0,10	20,00	2,00	2,40	4,80				CBUQ	CAP-20	6,0	t	0,29
450	+ 0,0	500	+ 0,0	1.000,00		0,10	10,00	1,00	2,40	2,40				CBUQ	CAP-20	6,0	t	0,14
500	+ 0,0	550	+ 0,0	1.000,00		0,10	50,00	5,00	2,40	12,00				CBUQ	CAP-20	6,0	t	0,72
550	+ 0,0	600	+ 0,0	1.000,00		0,10	20,00	2,00	2,40	4,80				CBUQ	CAP-20	6,0	t	0,29
600	+ 0,0	650	+ 0,0	1.000,00		0,10	20,00	2,00	2,40	4,80				CBUQ	CAP-20	6,0	t	0,29
900	+ 0,0	950	+ 0,0	1.000,00		0,10	10,00	1,00	2,40	2,40				CBUQ	CAP-20	6,0	t	0,14
950	+ 0,0	1000	+ 0,0	1.000,00		0,10	50,00	5,00	2,40	12,00				CBUQ	CAP-20	6,0	t	0,72
1000	+ 0,0	1050	+ 0,0	1.000,00		0,10	10,00	1,00	2,40	2,40				CBUQ	CAP-20	6,0	t	0,14
1300	+ 0,0	1350	+ 0,0	1.000,00		0,10	20,00	2,00	2,40	4,80				CBUQ	CAP-20	6,0	t	0,29
								35,00		84,00]					

RODOVIA: PA -275 (LOTE I)
TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS
SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS
EXTENSÃO: 31,5 Km

REMENDO PROFUNDO E TAPA BURACO

LOCAL	IZAÇÃ	0			DIN	MENSÕES			REMENDO PROFUNDO		SIÇÃO PISTA			MATER	IAL BETUM	INOSO	
ES	ГАСА		EXTENSÃO	LARGURA	ESP.	ÁREA	VOLUME	DENSIDADE	QUANTIDADE		LADO		MATERIAL	LIGANTE	TAXA DE	UND	QUANT.
			(m)	(m)	(m)	(m ²)	(m ³)	(t/m³)	(t)	ESQ.	EIXO	DIR.			APLIC. (%)		
0 + 0,0	30	+ 0,0			0,25	300,00	75,00	2,40	180,00				CBUQ	CAP-20	6,0	t	10,80
38 + 0,0	100	+ 0,0			0,25	150,00	37,50	2,40	90,00				CBUQ	CAP-20	6,0	t	5,40
100 + 0,0	150	+ 0,0			0,25	600,00	150,00	2,40	360,00				CBUQ	CAP-20	6,0	t	21,60
200 + 0,0	250	+ 0,0			0,25	150,00	37,50	2,40	90,00				CBUQ	CAP-20	6,0	t	5,40
1300 + 0,0	1350	+ 0,0			0,25	300,00	75,00	2,40	180,00				CBUQ	CAP-20	6,0	t	10,80
1450 + 0,0	1500	+ 0,0			0,25	300,00	75,00	2,40	180,00				CBUQ	CAP-20	6,0	t	10,80
1500 + 0,0	1530	+ 0,0			0,25	150,00	37,50	2,40	90,00				CBUQ	CAP-20	6,0	t	5,40
							487,50		1.170,00								

RODOVIA: PA -275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km

REMENDO PROFUNDO E TAPA BURACO

SEGM	IENTO	REG	GULARIZA	ÇÃO DO SI	JBLE:	ITO			TR	ANSPOR	TES				MATE	RIAL I	BETU	MINOSC
FCTACA	FCTACA	EXTENSÃO	LARGURA	ÁREA		OLIANIT	MATERIAL		Origem		DESTINO	DMT	LINID	CLIANT	TIDO	TAXA		CHANT
ESTACA	ESTACA	(m)	(m)	(m ²)	UND	QUANT.	MATERIAL	OCORR.	ESTACA	D. EIXO	DESTINO	(Km)	UND	QUANT.	TIPO	DE APLIC	UND	QUANT.
ACOSTAMENTO	O DIREITO																	
163 + 0,0	1440 + 0,0	25.540,00	2,30	58.742,00	m²	58.742,00												
		25.540,00				58.742,00												
ACOSTAMENTO	OS LADO ESQ.																	
163 + 0,0	1440 + 0,0	25.540,00	2,30	58.742,00	m²	58.742,00												
		25.540,00				58.742,00												
				TOTAL	•	117.484,00	m²											

RODOVIA: PA -275 (LOTE I)
TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS
SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS
EXTENSÃO: 31,5 Km

DEMONSTRATIVO DE PAVIMENTAÇÃO

SEGN	MENTO		RECICL	.AGEM	DO PAVIM	IENTO EXIS	STENTE					TRANSPO	ORTES				MA	TERIAL E	BETUM	INOSO
ESTACA	ESTACA	EXTENSÃO	LARGURA	ESP.	VOLUME	DENSIDADE	UND	QUANT.	MATERIAL		Origem		DESTINO	DMT	UND	QUANT.	TIPO	TAXA DE APLIC.	UND	QUANT.
20171071	20171071	(m)	(m)	(m)	(m ³)	(t/m ³)	0.10	Q07		OCORR.	ESTACA	D. EIXO	52011110	(Km)	0.15	Q07		(%)	0.15	Q07
	1	Y	PISTA D	E ROLAI	MENTO			r												
150 + 0,0	200 + 0,0	1.000,00	7,00	0,20	1.400,00	0,00	m3	1.400,00												
														-						
						TOTA	L	1.400,00	m³											
	·		•	-									0.00 567400 5							

RODOVIA: PA -275 (LOTE I)
TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS
SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS
EXTENSÃO: 31,5 Km

DEMONSTRATIVO DE PAVIMENTAÇÃO

SEGM	IENTO	SUB-BA	SE ESTABI	LISADA	GRANULOM	. SEM N	MISTURA			TRA	ANSPORT	ES		
ESTACA	ESTACA	EXTENSÃO	LARGURA	ESP.	VOLUME	UND	QUANT.	MATERIAL		ORIGEM		[DESTINO (PISTA)
LSTACA	LSTACA	(m)	(m)	(m)	(m ³)	UND	QUANT.	MATERIAL	OCORR.	ESTACA	D. EIXO	DMT(km)	UND	QUANT.
			ACOSTAMEN	TO LADO	DIR.									
163 + 0,0	1440 + 0,0	25.540,00	2,25	0,20	11.493,00	m³	11.493,00	SOLO						
	•		COSTAMENT											
163 + 0,0	1440 + 0,0	25.540,00	2,25	0,20	11.493,00	m³	11.493,00	SOLO						
	1													
											1			
	+													
	1													
					TOTAL	<u> </u>	22.986,0	m ³						

RODOVIA: PA -275 (LOTE I)
TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS
SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS
EXTENSÃO: 31,5 Km

DEMONSTRATIVO DE PAVIMENTAÇÃO

SEGI	MENTO	RASE	FSTARTI TO	SADA G	RANULOM. S	EM MTS	THEA			TDA	NSPORT	FS		
		EXTENSÃO	LARGURA	ESP.	VOLUME					ORIGEM			DESTINO (PISTA)
ESTACA	ESTACA	(m)	(m)	(m)	(m ³)	UND	QUANT.	MATERIAL	OCORR.	ESTACA	D. EIXO	DMT(km)	UND	QUANT.
			PISTA DE RO	DLAMEN	то									
150 + 0,0	200 + 0,0	1.000,00	7,00	0,20	1.400,00	m³	1.400,00	SOLO						
			COSTAMENT			I								
163 + 0,0	1440 + 0,0	25.540,00	2,15	0,20	10.982,20	m³	10.982,20	SOLO						
		AC	I OSTAMENTO	S LADO	ESQ.									
163 + 0,0	1440 + 0,0	25.540,00	2,15	0,20	10.982,20	m³	10.982,20	SOLO						
-,-	-,-	-,	, -	, -	- , ,		,	-						
					TOTAL		23.364,4	m³						

GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN RODOVIA: PA -275 (LOTE I)

TRECH SUB-TI EXTEN

RODOVIA: PA -275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km

DEMONSTRATIVO DE PAVIMENTAÇÃO

SE	GMENTO			I	MPRIMAÇÃ	0					TRANSPO	RTES						MATERIAL BETU	MINOSO)
			EXTENSÃO	LARGURA	ÁREA	Ī		====		ORIGEM			DMT	TAXA						
ESTACA	EST	ACA	(m)	(m)	(m ²)	UND	QUANT.	MATERIAL	OCORR.	ESTACA	D. EIXO	DEST.	(Km)	APLIC. (%)	UND	QUANT.	TIPO	TAXA APLIC. (%)	UND	QUANT.
			PISTA	DE ROL	AMENTO	1	I							(10)						
150 + 0,	0 200 -	0,0	1.000,00	7,00	7.000,00	m ²	7.000,00	CM-30												
			ACOSTA	 MENTO I	LADO DIR.															
163 + 0,	0 1440 -	٠,0 ا	25.540,00	2,00	51.080,00	m ²	51.080,00	CM-30												
<u> </u>		· ·	,	,	,		,													
			ACOSTA	MENTO I	ADO ESQ.															
163 + 0,	0 1440 -	0,0	25.540,00	2,00	51.080,00	m ²	51.080,00	CM-30												
																				₩
																				<u> </u>
																				<u> </u>
																				<u> </u>
					TOTAL	<u> </u>	109.160,00	m ²				 								
	1		l .	1			1				I		l	I .			l			<u></u>

RODOVIA: PA -275 (LOTE I)
TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS
SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS
EXTENSÃO: 31,5 Km

DEMONSTRATIVO DE PAVIMENTAÇÃO

1		ī																					
SEGM	1ENTO		PINTU	RA DE LIGA	ÇÃO			TRANSPORTES										MATERIAL BETUMINOSO					
ESTACA	ESTACA	EXTENSÃO		ÁREA	UND	QUANT.	MATERIAL		ORIGEM		DEST.	DMT	TAXA DE	UND	QUANT.	TAXA DE APLIC.	UND	QUANT.					
		(m)	(m)	(m ²)				OCORR.	ESTACA	D. EIXO		(Km)	APLIC. (%)			(%)							
	PISTA DE ROLAMENTO(primeira camada, pavimento novo) 50 + 0,0 200 + 0,0 1.000,00 7,00 7.000,00 m² 7.000,00 RR-2																						
150 + 0,0	200 + 0,0	1.000,00	7,00	7.000,00	m ²	7.000,00	RR-2C																
	PISTA DE ROLAMENTO (camada de recapeamento)																						
0 + 5,5	1530 + 0,0	30.594,50	7,00	214.161,50	m ²	214.161,50	RR-2C																
		ACOS	TAMENTO LA	ADO DIR.																			
163 + 0,0	1440 + 0,0	25.540,00	2,00	51.080,00	m ²	51.080,00	RR-2C																
		ACOS.	TAMENTO LA	ADO ESQ.																			
163 + 0,0	1440 + 0,0	25.540,00	2,00	51.080,00	m ²	51.080,00	RR-2C																
							1			1							1						
				TOTAL	<u> </u>	323.321,50	m ²																
				IOIAL		323.321,30	1117								Ĺ								

RODOVIA: PA -275 (LOTE I)
TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS
SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS
EXTENSÃO: 31,5 Km

DEMONSTRATIVO DE PAVIMENTAÇÃO

SEGMENTO CONCRETO BET				JMINO	SO USINAD	O A QUEN	TE ((CBUQ)	TRANSPORTES									MATERIAL BETUMINOSO				
FCTACA	ESTACA	EXTENSÃO	LARGURA	ESP.	VOLUME	DENSIDADE	UND	CHANT	MATERIAL		Origem		DESTINO	DMT	LIND	CHANE	1	TAXA DE				
ESTACA ESTACA		(m)	(m)	(m)	(m³)	(t/m ³)	UND	QUANT.	MATERIAL	OCORR.	ESTACA	D. EIXO	DESTINO	(Km)	UND	QUANT.	TIPO	APLIC. (%)	UND	QUANT.		
		PISTA DE RO	LAMENTO	(Pavim	ento novo)																	
150 + 0,0	200 + 0,0	1.000,00	7,00	0,07	490,00	2,40	t	1.176,00														
		PISTA DE RO	 DLAMENTO	(Reca	peamento)																	
0 + 5,5	150 + 0,0	2.994,50	7,00	0,03	628,85	2,40	t	1.509,23														
200 + 0,0	1530 + 0,0	26.600,00	7,00	0,03	5.586,00	2,40	t	13.406,40														
		ACOS	TAMENTO	LADO [DIR.																	
163 + 0,0	1440 + 0,0	25.540,00	2,00	0,03	1.532,40	2,40	t	3.677,76														
		ACOS	TAMENTO	LADO E	sq.																	
163 + 0,0	1440 + 0,0	25.540,00	2,00	0,03	1.532,40	2,40	t	3.677,76														
						TOTAL		23.447,15	t													

GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN RODOVIA: PA - 275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km

SETRAN

DEMONSTRATIVO DE PAVIMENTAÇÃO

SEGM	1ENTO	CORREÇÃO DE DEFEITOS COM FRESAGEM DESCONTINUA (Esp. Até 3,0cm)								TRANSPORTES									MATERIAL BETUMINOSO				
ESTACA	ESTACA	EXTENSÃO	O LARGURA	ESP.	VOLUME	DENSIDADE	LINIE	QUANT. (m2)	MATERIAL		Origem			DMT	LIND	QUANT.	TIDO	TAXA DE APLIC.	UND	QUANT.			
LSTACA	LSTACA	(m)	(m)	(m)	(m ³)	(t/m³)	UND	QUANT. (IIIZ)		OCORR.	ESTACA	D. EIXO	DESTINO	(Km)	OND	QUAIVI.	1110	(%)	UND	QUANT.			
PISTA DE ROLAMENTO / FRESAGEM																							
163 + 0,0	250 + 0,0	1.740,00	7,00	0,03	365,40			12.180,00															
300 + 0,0	330 + 0,0	600,00	7,00	0,03	126,00			4.200,00															
350 + 0,0	410 + 0,0	1.200,00	7,00	0,03	252,00			8.400,00															
450 + 0,0	470 + 0,0	400,00	7,00	0,03	84,00			2.800,00															
500 + 0,0	515 + 0,0	300,00	7,00	0,03	63,00			2.100,00															
550 + 0,0	560 + 0,0	200,00	7,00	0,03	42,00			1.400,00															
600 + 0,0	625 + 0,0	500,00	7,00	0,03	105,00			3.500,00															
650 + 0,0	675 + 0,0	500,00	7,00	0,03	105,00			3.500,00															
700 + 0,0	725 + 0,0	500,00	7,00	0,03	105,00			3.500,00															
750 + 0,0	775 + 0,0	500,00	7,00	0,03	105,00			3.500,00															
800 + 0,0	815 + 0,0	300,00	7,00	0,03	63,00			2.100,00															
850 + 0,0	880 + 0,0	600,00	7,00	0,03	126,00			4.200,00															
900 + 0,0	910 + 0,0	200,00	7,00	0,03	42,00			1.400,00															
950 + 0,0	990 + 0,0	800,00	7,00	0,03	168,00			5.600,00															
1000 + 0,0	1020 + 0,0	400,00	7,00	0,03	84,00			2.800,00															
1050 + 0,0	1070 + 0,0	400,00	7,00	0,03	84,00			2.800,00															
1100 + 0,0	1110 + 0,0	200,00	7,00	0,03	42,00			1.400,00															
1150 + 0,0	1160 + 0,0	200,00	7,00	0,03	42,00			1.400,00															
1200 + 0,0	1225 + 0,0	500,00	7,00	0,03	105,00			3.500,00															
1250 + 0,0	1260 + 0,0	200,00	7,00	0,03	42,00			1.400,00															
1300 + 0,0	1335 + 0,0	700,00	7,00	0,03	147,00			4.900,00															
1350 + 0,0	1375 + 0,0	500,00	7,00	0,03	105,00			3.500,00	-														
1400 + 0,0	1450 + 0,0	1.000,00	7,00	0,03	210,00			7.000,00															
1450 + 0,0	1500 + 0,0	1.000,00	7,00	0,03	210,00			7.000,00															
1500 + 0,0	1530 + 0,0	600,00	7,00	0,03	126,00			4.200,00															
		14.040,00			2.948,40			98.280,00															
<u> </u>													<u> </u>			ļ		ļ	<u> </u>				

RODOVIA: PA -275 (LOTE I)
TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS
SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS
EXTENSÃO: 31,5 Km

DEMONSTRATIVO DE PAVIMENTAÇÃO

5.5 Projeto de Sinalização

O projeto ora elaborado, obedece às instruções contidas no Manual de Sinalização Rodoviária do DNIT 3ª edição 2010 e do CONTRAN, cujo texto, juntamente com o Código de Trânsito Brasileiro, são considerados como parte integrante do projeto, regendo as questões referentes à classificação, forma, cor, dimensões, símbolos, palavras, letras, localização e posições dos sinais, marcas e acessórios.

O Projeto de Sinalização é composto da sinalização vertical, da sinalização horizontal e dos dispositivos auxiliares.

✓ Sinalização Vertical

A sinalização vertical é realizada através dos sinais de trânsito, cuja finalidade essencial é transmitir na via pública, normas específicas, mediante símbolos e legendas padronizadas, com o objetivo de advertir (sinais de advertência), regulamentar (sinais de regulamentação) e indicar (sinais de indicação) a forma correta e segura para a movimentação de veículos e pedestres.

No que concerne a sinalização vertical projetada, além da sinalização de regulamentação e advertência foi dado ênfase à sinalização indicativa na interseção do início do trecho e travessias urbanas. As placas indicativas obedeceram a série D, com altura H das letras sendo de 17,5 mm.

As placas de sinalização vertical deverão ser confeccionadas em chapa de aço zincado, na espessura de 1,25 mm, com o mínimo de 270 g/cm² de zinco, totalmente refletiva, de esferas encapsuladas e fixadas em suportes de madeira.

✓ Sinalização Horizontal

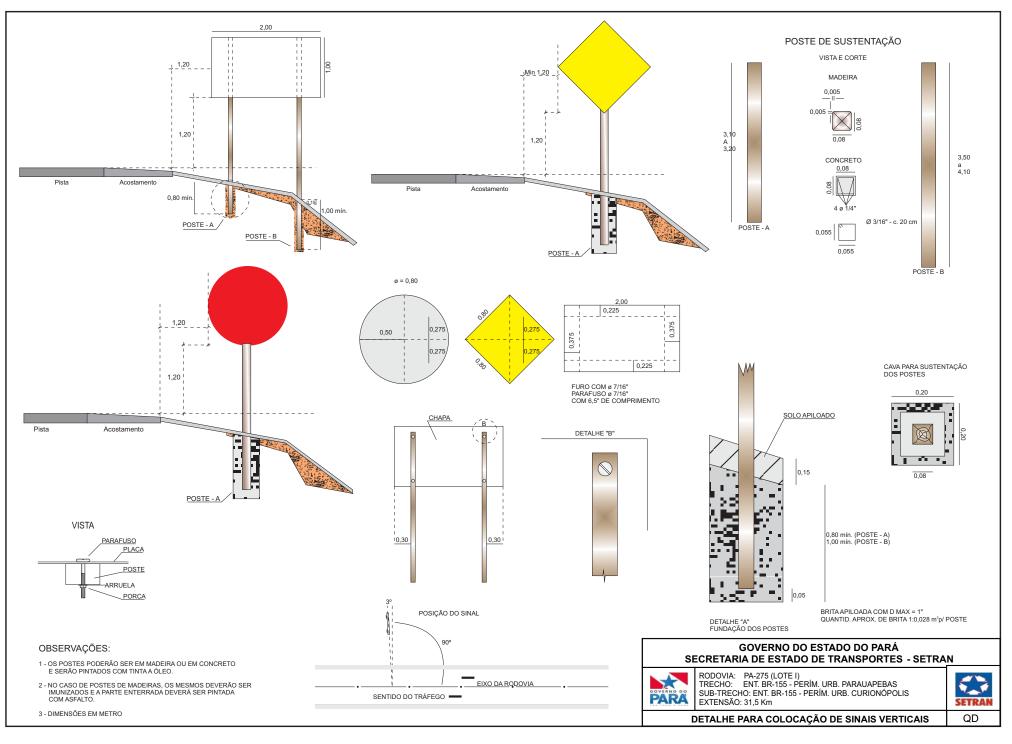
A sinalização horizontal é realizada através de marcações no pavimento, cuja função é regulamentar, advertir ou indicar aos usuários da via, condutores de veículos e pedestres, de forma a tornar mais eficiente e segura a operação da mesma. Entende-se por marcações no pavimento, o conjunto de sinais constituídos de linhas, marcações, símbolos ou legendas, em tipos e cores diversos, apostos ao pavimento da via.

Com relação à sinalização horizontal projetada, foram adotados os seguintes padrões:

- Linhas de Bordo: São contínuas, na cor branca, com largura de 0,10 m, afastadas dos bordos da pista de 0,10 m;
- Linhas de Divisão de Fluxos de Sentidos Opostos: tracejadas, na cor amarela, com largura de 0,10 m, em segmentos de 3,00 m de comprimento, espaçados de 9,00 m, sendo assim nos 152,00 m que antecedem as linhas de proibição de ultrapassagem, estas terão espaçamentos de 3,00 m;
- Linha de proibição de Ultrapassagem: contínuas, na cor amarela, com largura de 0,10 m e, quando dupla, separadas de 0,10 m

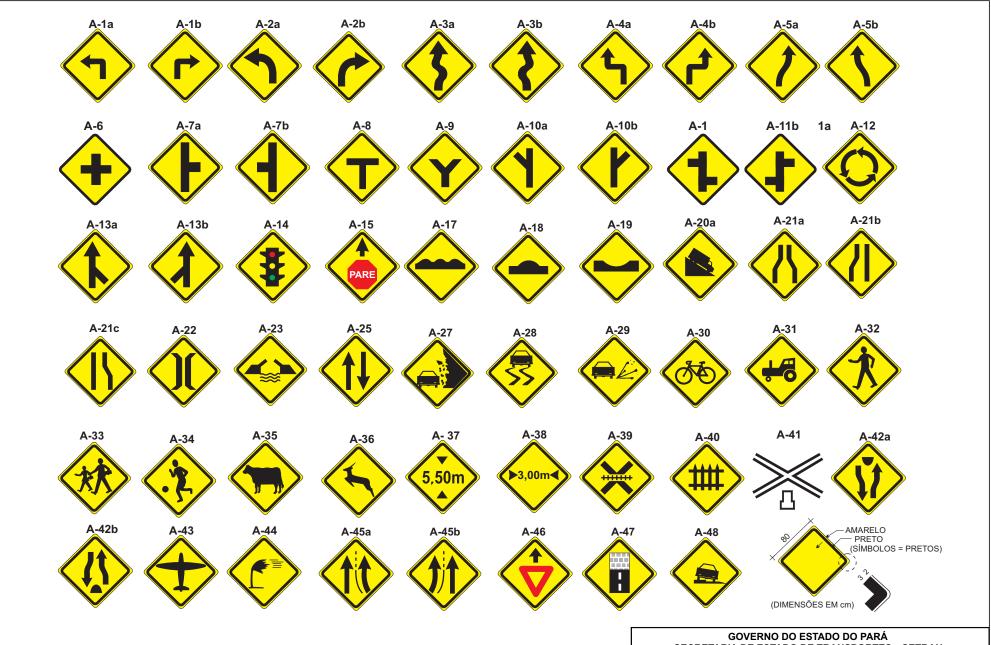
- Linhas de Zebrado: São linhas diagonais posicionadas em função do sentido do fluxo, de tal forma a sempre conduzir o veículo para a pista trafegável, e formando o ângulo a, igual ou próximo de 45°, com a linha de canalização que lhe é adjacente. Tem largura de 0,30 m, espaçadas de 1,20 m, na cor branca ou na cor amarela, sempre de acordo com as linhas de canalização que delimitam a área zebrada.
- Marcações de setas no pavimento: na cor branca, com comprimento de 5,00 m.
- Linhas de retenção: A linha de retenção é a marca transversal continua, na cor branca, aplicada sobre a faixa de rolamento, com o objetivo de indicar ao condutor o local limite que deve parar o veículo. Tem largura de 0,50 m.

A sinalização horizontal deverá ser executada com material termoplástico extrudado retrorefletorizante com 1,5 mm de espessura úmida.


✓ Dispositivos Auxiliares

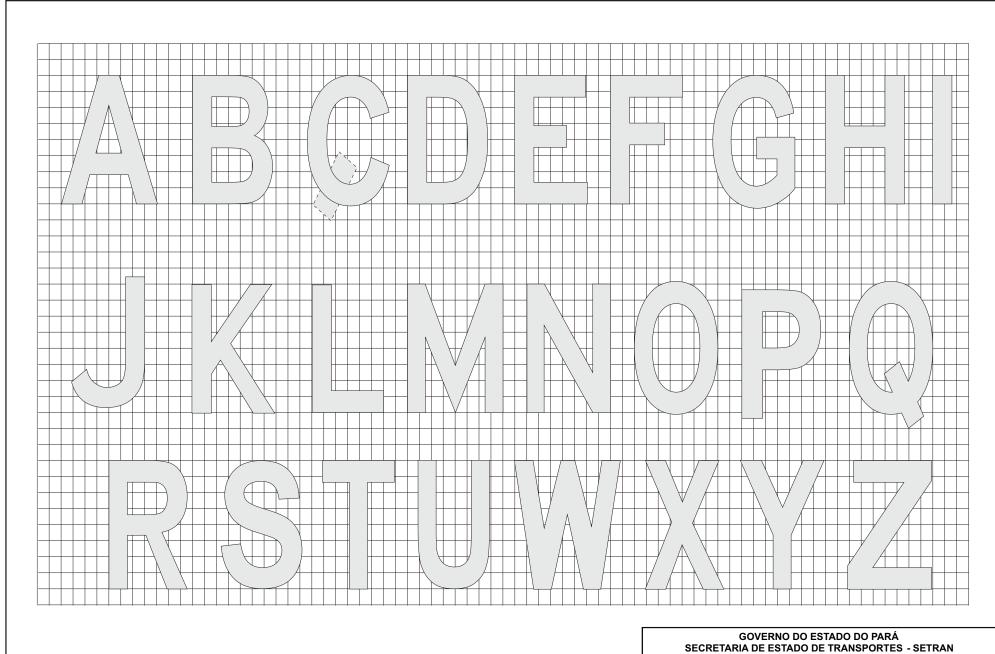
Como dispositivos auxiliares de sinalização foram utilizados tachas monodirecionais nos bordos e eixo das pistas. Tachas bidirecionais em alguns segmentos, além de tachões nas ilhas de canalização.

✓ Apresentação do Projeto


A apresentação do Projeto de Sinalização consta ainda, de desenhos contendo instruções recomendadas para execução dos diversos serviços utilizados, tais como:

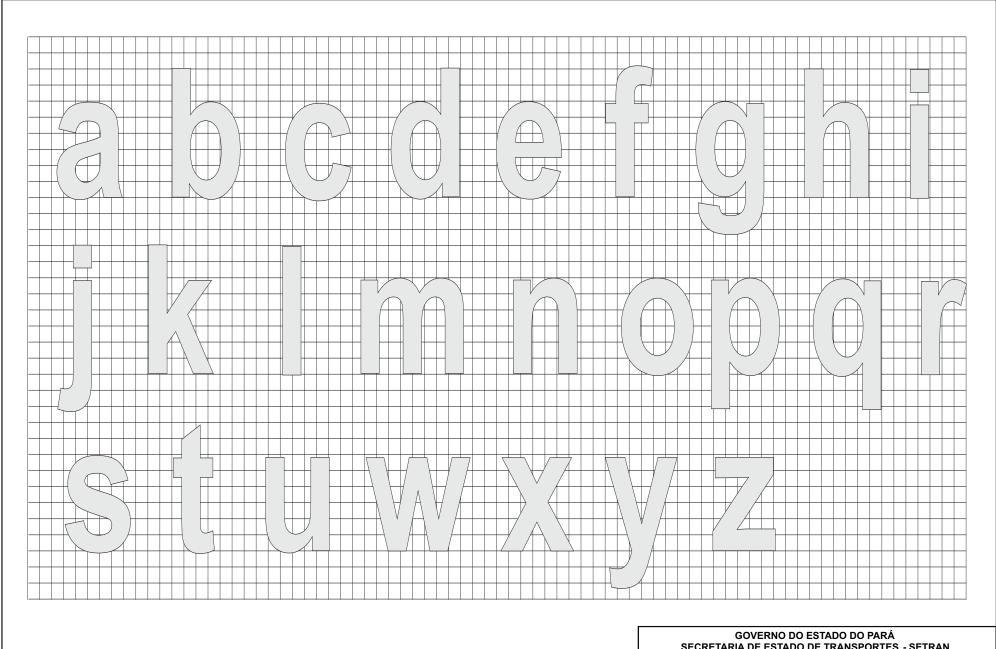
- Desenho contendo os sinais-tipo, que são uma reprodução dos sinais de regulamentação e advertência contidos no Manual de Sinalização Rodoviária do DNIT;
- Desenhos contendo os sinais de indicação, específicos para esta rodovia;
- Desenhos contendo os detalhes das letras, números e símbolos utilizados dos sinais verticais;
- Desenho contendo os detalhes das setas utilizadas nos sinais verticais;
- Desenho contendo os detalhes para execução das marcações no pavimento;
- Desenho contendo os detalhes para execução das tachas e tachões;
- Desenho contendo os detalhes para execução da sinalização de obras.
- Finalizando, é apresentado quadro contendo:
- Resumo das quantidades dos diversos serviços de sinalização utilizados no projeto.

EXTENSÃO: 31,5 Km


SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN

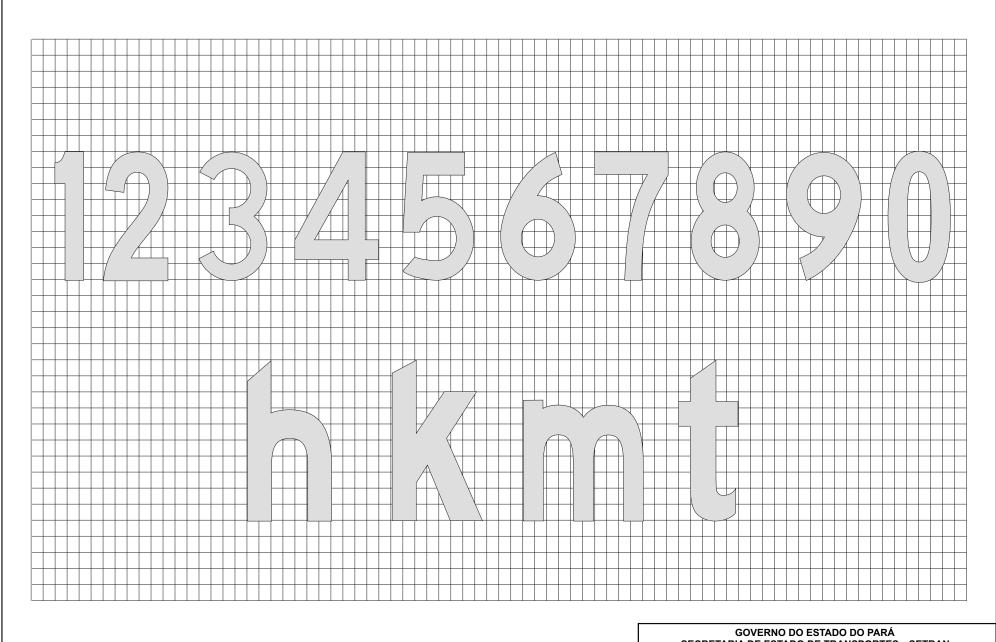
RODOVIA: PA-275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km

SINAIS TIPO (ADVERTÊNCIA)



RODOVIA: PA-275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km

SINALIZAÇÃO VERTICAL - LETRAS 1


SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN

RODOVIA: PA-275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km

SINALIZAÇÃO VERTICAL - LETRAS 2

SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN

RODOVIA: PA-275 (LOTE I)
TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS
SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km

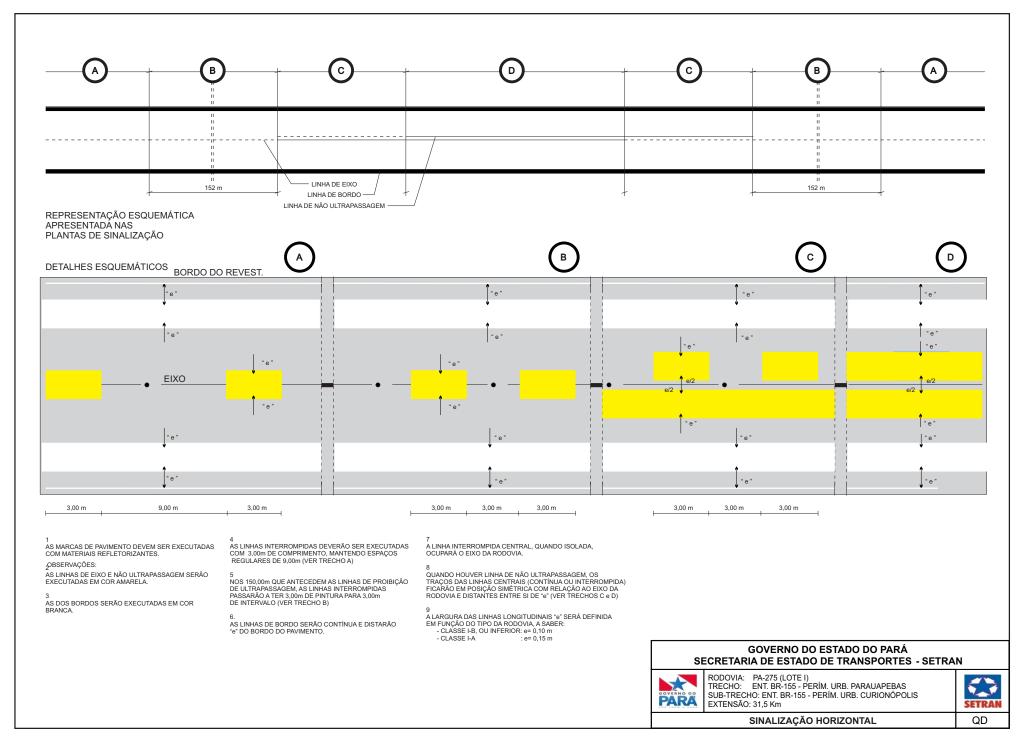
SINALIZAÇÃO VERTICAL - LETRAS 3

LARGURA DE LETRAS E ALGARISMOS, ESPESSURA DO TRAÇO DE ESPAÇO ENTRE CARACTERES

Medidas em milímetros

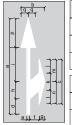
PARA DETERMINAR O ESPAÇAMENTO ADEQUADO ENTRE AS LETRAS OU ALGARISMOS, OBTENHA O NÚMERO DE CÓDIGO NA TABELA V_ OU VI E ENTRE NA TABELA X PARA NÚMERO DE CÓDIGO OBTIDO ATÉ A ALTURA DESEJADA DA LETRA OU ALGARISMO.

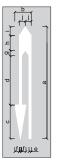
NÚMERO	<u>TABELA V</u> D DE CÓDIGO DE LETF	RA PARA LETRA						LAR	<u>TABELA VIII</u> GURA DAS LETRA	AS				
		LETRA SEGUINTE		LETRAS					ALTURA DAS					
LETRA		-			100	125	150	175	200	250	300	350	400	450
PRECEDENTE	BDEFHIKL	CGOQSXZ	AJTVWY	Α	85	106	127	149	170	213	255	297	340	382
	MNPRU			В	68	86	102	119	137	171	205	239	273	307
A	2	2	4	С	68	86	102	119	137	171	205	239	273	307
В	1	2	2	D	68	86	102	119	137 124	171	205	239	273	307
C D	2	2	3 2	E F	62 62	77	93	108	124 124	155 155	186	217	248 248	279 279
E E	2	2 2	3	G	68	77 86	93 102	108 119	137	171	186 205	217 239	273	307
<u> </u>	2	2	3	н	68	86	102	119	137	171	205	239	273	307
G	1	2	2	ï	16	20	24	28	32	40	48	56	63	71
н	1 1	1	2	l j	64	79	95	111	127	159	191	222	254	286
Ï	1	1	2	ĸ	70	87	105	123	140	175	210	244	280	314
J	1	1	2	L	62	77	93	108	124	155	186	217	248	279
K	2	2	3	M	79	98	118	138	157	196	230	275	314	354
L	2	2	4	N	68	86	102	119	137	171	205	239	273	307
M	1	1	2	0	71	89	107	125	143	179	214	250	286	321
N	1	1	2	Р	68	86	102	119	137	171	205	239	273	307
0	1	2	2	Q	71	89	107	125	143	179	214	250	286	321
P	1	2	4	R	68	86	102	119	137	171	205	239	273	307
Q	1 1	2	2	S	68	86	102	119	137	171	205	239	273	307
R	1 1	2	2	l i	62	77	93	108	124	155 171	186	217 239	248 273	279
S	1 2	2 2	2 4	V	68 76	86 95	102 114	119 133	137 152	1/1	205 229	239 267	273 305	307 343
ù	1	1	2	w	89	111	133	156	178	222	267	311	356	400
v	2	2	4	X	68	86	102	119	137	171	205	239	273	307
w	2	2	4	Ŷ	86	107	129	150	171	211	257	300	343	386
×	2	2	3	ż	68	86	102	119	137	171	205	239	273	307
Y	2	2	4											
Z	2	2	3											
NIÍMERO DE C	<u>TABELA VI</u> CÓDIGO DE ALGARISM	O DADA ALGADISM	10					LARGII	TABELA IX	MOS				
NOWERO DE C	JUDIGO DE ALGANISIV							LARGURA DOS ALGARISMOS						
								LANCO	ALTURA DOS A					
ALGARISMO	Al	GARISMO SEGUINTE		ALGARISMO	100	125	150	175			300	350	400	450
ALGARISMO PRECEDENTE		.GARISMO SEGUINTE		ALGARISMO 1	100 25	125 31	150 37		ALTURA DOS A	LGARISMOS	300 74	350 86	400 98	450 111
	1-5		4-7		25 68	31 85	37 102	175 43 119	ALTURA DOS A 200 49 137	250 62 171	74 205	86 239	98 273	111 307
PRECEDENTE 1		GARISMO SEGUINTE 2-3-6-8-9-0 1	4-7 2	1	25 68 68	31 85 85	37 102 102	175 43 119 119	ALTURA DOS A 200 49 137 137	250 62 171 171	74 205 205	86 239 239	98 273 273	111 307 307
PRECEDENTE 1 2	1-5	2-3-6-8-9-0 1 2	4-7 2 2	1 2 3 4	25 68 68 75	31 85 85 93	37 102 102 112	175 43 119 119 131	ALTURA DOS A 200 49 137 137 149	250 62 171 171 187	74 205 205 224	86 239 239 261	98 273 273 298	111 307 307 336
PRECEDENTE 1	1-5 1 1 1	2-3-6-8-9-0 1 2 2	4-7 2 2 2 2	1 2 3 4 5	25 68 68 75 68	31 85 85 93 85	37 102 102 112 102	175 43 119 119 131 119	ALTURA DOS A 200 49 137 137 149 137	250 62 171 171 187 171	74 205 205 224 205	86 239 239 261 239	98 273 273 298 273	111 307 307 336 307
PRECEDENTE 1 2	1-5	2-3-6-8-9-0 1 2 2 2 2 2	4-7 2 2 2 2 4	1 2 3 4 5 6	25 68 68 75 68 68	31 85 85 93 85 85	37 102 102 112 102 102	175 43 119 119 131 119	ALTURA DOS A 200 49 137 137 149 137 137	250 62 171 171 187 171 171	74 205 205 205 224 205 205	86 239 239 261 239 239	98 273 273 298 273 273	111 307 307 307 336 307 307
PRECEDENTE 1 2	1-5 1 1 1	2-3-6-8-9-0 1 2 2 2 2 2 2	4-7 2 2 2 2 4 2	1 2 3 4 5	25 68 68 75 68 68	31 85 85 93 85 85	37 102 102 112 102 102 102	175 43 119 119 131 119 119	ALTURA DOS A 200 49 137 137 149 137 137 137	250 62 171 171 187 171 171 171	74 205 205 224 205 205 205	86 239 239 261 239 239 239	98 273 273 298 273 273 273	111 307 307 336 307 307 307
PRECEDENTE 1 2	1-5 1 1 1 2 1	2-3-6-8-9-0 1 2 2 2 2 2 2 2 2 2	4-7 2 2 2 2 4 2 2	1 2 3 4 5 6 7 8	25 68 68 75 68 68 68	31 85 85 93 85 85 85	37 102 102 112 102 102 102 102	175 43 119 119 131 119 119 119	ALTURA DOS A 200 49 137 137 149 137 137 137 137 137	250 62 171 187 171 171 171 171 171	74 205 205 205 224 205 205 205 205	86 239 239 261 239 239 239 239	98 273 273 298 273 273 273 273	111 307 307 336 307 307 307 307
PRECEDENTE 1 2 3 4 5 6 7	1-5 1 1 1	2-3-6-8-9-0 1 2 2 2 2 2 2 2 2 2 2 2	4-7 2 2 2 4 2 4 2 2 4	1 2 3 4 5 6 7 8	25 68 68 75 68 68 68	31 85 85 93 86 85 85	37 102 102 112 102 102 102 102 102	175 43 119 119 131 119 119 119 119	ALTURA DOS A 200 49 137 137 149 137 137 137 137 137 137	LGARISMOS 250 62 171 171 187 171 171 171 171 171 171 171	74 205 205 224 205 205 205 205 205 205	86 239 239 261 239 239 239 239	98 273 273 298 273 273 273 273 273 273	111 307 307 336 307 307 307 307 307
PRECEDENTE 1 2 3 4 5 6 7 8	1-5 1 1 1 2 1	GARISMO SEGUINTE 2-3-6-8-9-0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4-7 2 2 2 4 2 2 2 4 2 2	1 2 3 4 5 6 7 8	25 68 68 75 68 68 68	31 85 85 93 85 85 85	37 102 102 112 102 102 102 102	175 43 119 119 131 119 119 119	ALTURA DOS A 200 49 137 137 149 137 137 137 137 137	250 62 171 187 171 171 171 171 171	74 205 205 205 224 205 205 205 205	86 239 239 261 239 239 239 239	98 273 273 298 273 273 273 273	111 307 307 336 307 307 307 307
PRECEDENTE 1 2 3 4 5 6 7	1.5 1 1 1 2 1 1 2 1 1 1 1	2-3-6-8-9-0 1 2 2 2 2 2 2 2 2 2 2 2 2	4-7 2 2 2 4 2 4 2 2 4	1 2 3 4 5 6 7 8	25 68 68 75 68 68 68	31 85 85 93 86 85 85	37 102 102 112 102 102 102 102 102	175 43 119 119 131 119 119 119 119	ALTURA DOS A 200 49 137 137 149 137 137 137 137 137 137	LGARISMOS 250 62 171 171 187 171 171 171 171 171 171 171	74 205 205 224 205 205 205 205 205 205	86 239 239 261 239 239 239 239	98 273 273 298 273 273 273 273 273 273	111 307 307 336 307 307 307 307 307
PRECEDENTE 1 2 3 4 5 6 7 8 9	1-5 1 1 1 2 1 1 2 1 1 1 1 7ABELA VII	GARISMO SEGUINTE 2-3-6-8-9-0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4-7 2 2 2 4 2 2 2 4 2 2	1 2 3 4 5 6 7 8 9 0	25 68 68 75 68 68 68 68 68 71	31 85 85 93 86 85 85 85 86 85	37 102 102 112 102 102 102 102 102 102 107	175 43 119 119 131 119 119 119 119 119 119 11	ALTURA DOS A 200 49 137 137 149 137 137 137 137 137 137 143	LGARISMOS 250 62 171 171 171 171 171 171 171 171 171 17	74 205 205 224 205 205 205 205 205 205 214	86 239 239 261 239 239 239 239 239 250	98 273 273 298 273 273 273 273 273 273 273 286	111 307 307 336 307 307 307 307 307 321
PRECEDENTE 1 2 3 4 5 6 7 8 9 0	1.5 1 1 1 2 1 1 2 1 1 1 1 1 2 1 1 1 ESPESSURA DO TR	2-3-6-8-9-0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ACO	4-7 2 2 2 4 2 2 4 2 2 4 2 2 2 4	1 2 3 4 5 6 7 7 8 9 0 0	25 68 68 75 68 68 68 68 68 71	31 85 85 93 86 85 85 85 86 85	37 102 102 112 102 102 102 102 102	175 43 119 119 131 119 119 119 119 119 125	ALTURA DOS A 200 49 137 137 149 137 137 137 137 137 137 137 137 137 143 TABELA X RA OU ALGARISMO	LGARISMOS 250 62 171 171 187 171 171 171 171 171 171 179 PRECEDENTE ATÉ /	74 205 205 224 205 205 205 205 205 205 214	86 239 239 261 239 239 239 239 239 250	98 273 273 298 273 273 273 273 273 273 273 286	111 307 307 336 307 307 307 307 307 321
PRECEDENTE 1 2 3 4 5 6 7 8 9 0	1-5 1 1 1 2 1 1 1 1 2 1 1 1 1 2 1 1 1 ESPESSURA DO TR	2-3-6-8-9-0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ACO	4-7 2 2 2 4 2 2 4 2 2 4 2 2 2 4 2 2 2 2 DO TRAÇO	1 2 3 4 5 6 7 8 8 9 0 0 ESPAÇA	25 68 68 75 68 68 68 68 68 71	31 85 85 93 85 86 86 85 85 85 89	37 102 102 112 102 102 102 102 102 107 107	175 43 119 119 131 119 119 119 119 119 125	ALTURA DOS A 200 49 137 137 149 137 137 137 137 137 137 137 143 TABELAX RA OU ALGARISMO LTURA DAS LETRAS	250 62 171 171 187 171 171 171 171 171 171 171	74 205 205 224 205 205 205 205 205 205 205 214	86 239 239 261 239 239 239 239 239 239 250	98 273 273 298 273 273 273 273 273 273 286	111 307 307 336 307 307 307 307 307 307 307 307 307 307
PRECEDENTE 1 2 3 4 5 6 7 8 9 0 ALTURA DA LETRA OU 11	1.5 1 1 1 2 1 1 2 1 1 1 1 1 2 1 1 1 ESPESSURA DO TR	2-3-6-8-9-0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 ACO	4-7 2 2 2 4 2 2 4 2 2 2 2 2 2 2 2 0 DO TRAÇO	1 2 3 4 5 6 7 7 8 9 0 0	25 68 68 75 68 68 68 68 68 71	31 85 85 93 86 85 85 85 86 85	37 102 102 112 102 102 102 102 102 102 107	175 43 119 119 131 119 119 119 119 119 125	ALTURA DOS A 200 49 137 137 149 137 137 137 137 137 137 137 137 137 143 TABELA X RA OU ALGARISMO	LGARISMOS 250 62 171 171 187 171 171 171 171 171 171 179 PRECEDENTE ATÉ /	74 205 205 224 205 205 205 205 205 205 214	86 239 239 261 239 239 239 239 239 250	98 273 273 298 273 273 273 273 273 273 273 286	111 307 307 336 307 307 307 307 307 321
PRECEDENTE 1 2 3 4 5 6 7 7 8 9 0 ALTURA DA LETRA OU 10	1-5 1 1 1 2 1 1 1 2 1 1 1 1 TABELA VII ESPESSURA DO TR J ALGARISMO 00	2-3-6-8-9-0 1 2 2 2 2 2 2 2 2 2 2 2 2 4 CO ESPESSURA 16 20 24	4-7 2 2 2 4 4 2 2 4 2 2 2 2 2 2 2 2 2 DO TRAÇO	1 2 3 4 5 6 7 7 8 9 0 0 ESPAÇÂ	25 68 68 75 68 68 68 68 68 71	31 85 85 93 85 85 85 85 85 85 85 85	37 102 102 112 102 102 102 102 102 107 ARTIR DA EXTREMIDA	175 43 119 119 131 119 119 119 119 119 125 DE DIREITA DA LET A 175 42 33	ALTURA DOS A 200 49 137 137 137 137 137 137 137 137 143 TABELAX RA OU ALGARISMO LTURA DAS LETRAS 200	LGARISMOS 250 62 171 171 171 171 171 171 171 171 171 17	74 205 205 205 224 205 205 205 205 205 205 214 A EXTREMIDADE ES 300 71 57	86 239 239 261 239 239 239 239 239 250	98 273 273 298 273 273 273 273 273 273 286	111 307 307 336 307 307 307 307 307 307 307 307 307 307
PRECEDENTE 1 2 3 4 5 6 7 8 9 0 ALTURA DA LETRA OU 11 12 11	1-5 1 1 1 2 1 1 2 1 1 1 1 1 2 1 1 1 1 SPESSURA DO TR J ALGARISMO 00 25 50 75	GARISMO SEGUINTE 2-3-6-8-9-0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4-7 2 2 2 4 2 2 4 2 2 2 2 2 2 3 DO TRAÇO	1 2 3 4 5 6 7 7 8 9 0 0 ESPAÇA NÚMERO DE CÓDIGO 1 1	25 68 68 75 68 68 68 68 68 71	31 85 85 93 86 85 85 85 85 88 89	37 102 102 112 102 102 102 102 102 107 107	175 43 119 119 131 119 119 119 119 125 DE DIREITA DA LET A 175 42 33 22	ALTURA DOS A 200 49 137 137 137 137 137 137 137 137 137 143 TABELA X RA OU ALGARISMO LTURA DAS LETRAS 200 48 38 25	LGARISMOS 250 62 171 187 187 171 171 171 171 171 171 179 PRECEDENTE ATÉ / 5 OU ALGARISMOS 250 60 48 32	74 205 205 204 205 205 205 205 205 205 205 214 A EXTREMIDADE ES 300 71 57 38	86 239 239 261 239 239 239 239 239 239 250 QUERDA DA LETRA 350 83 67 44	98 273 273 298 273 273 273 273 273 286 OU ALGARISMO SE 400 95 76 51	111 307 307 336 307 307 307 307 307 307 307 321 GUINTE 450 105 86 57
PRECEDENTE 1 2 3 4 5 6 7 8 9 0 ALTURA DA LETRA OU 11 12 14 15 12 22	1-5 1 1 1 2 1 1 2 1 1 1 1 1 ESPESSURA DO TR J ALGARISMO 00 00 25 50 60 60 60 60 60 60 60 60 60 60 60 60 60	2-3-6-8-9-0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4-7 2 2 2 4 2 2 4 2 2 2 4 2 2 2 2 ADO TRAÇO	1 2 3 4 5 6 7 7 8 9 0 0 ESPAÇA NÚMERO DE CÓDIGO 1 2	25 68 68 75 68 68 68 68 68 71	31 85 85 93 85 85 85 85 85 85 85 85 85 30 224	37 102 102 112 102 102 102 102 102 107 107 ARTIR DA EXTREMIDA 150 36 29	175 43 119 119 131 119 119 119 119 119 125 DE DIREITA DA LET A 175 42 33	ALTURA DOS A 200 49 137 137 149 137 137 137 137 137 137 143 TABELAX RA OU ALGARISMO LTURA DAS LETRAS 200 48 38	LGARISMOS 250 62 171 171 187 171 171 171 171 17	74 205 205 205 224 205 205 205 205 205 205 214 A EXTREMIDADE ES 300 71 57	86 239 239 261 239 239 239 239 239 250 QUERDA DA LETRA 350 83 67	98 273 273 298 273 273 273 273 273 273 286 OU ALGARISMO SEC	111 307 307 336 307 307 307 307 307 307 307 307 307 307
PRECEDENTE 1 2 3 4 5 6 7 8 9 0 ALTURA DA LETRA OU 11 12 11 11 20 21	1-5 1 1 1 1 2 1 1 1 2 1 1 1 1 1 TABELA VII ESPESSURA DO TR J ALGARISMO 00 00 75 00 50	2-3-6-8-9-0 1 2-3-6-8-9-0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4-7 2 2 2 4 4 2 2 4 2 2 2 2 2 2 2 DO TRAÇO	1 2 3 4 5 6 7 7 8 9 0 0 ESPAÇA DE CÓDIGO 1 2 3 3	25 68 68 75 68 68 68 68 68 71 MENTO MEDIDO HO 100 24 19	31 85 85 93 85 85 85 85 85 85 85 85 85 24	37 102 102 112 102 102 102 102 102 107 107	175 43 119 119 131 119 119 119 119 125 DE DIREITA DA LET A 175 42 33 22	ALTURA DOS A 200 49 137 137 137 137 137 137 137 137 137 143 TABELA X RA OU ALGARISMO LTURA DAS LETRAS 200 48 38 25	LGARISMOS 250 62 171 187 187 171 171 171 171 171 171 179 PRECEDENTE ATÉ / 5 OU ALGARISMOS 250 60 48 32	74 205 205 204 205 205 205 205 205 205 205 214 A EXTREMIDADE ES 300 71 57 38	86 239 239 261 239 239 239 239 239 239 250 QUERDA DA LETRA 350 83 67 44	98 273 273 298 273 273 273 273 273 286 OU ALGARISMO SE 400 95 76 51	111 307 307 336 307 307 307 307 307 307 307 321 GUINTE 450 105 86 57
PRECEDENTE 1 2 3 4 5 6 7 8 9 0 ALTURA DA LETRA OU 11 12 11 12 21 22 33	1-5 1 1 1 1 2 1 1 1 2 1 1 1 1 1 2 1 1 1 1	GARISMO SEGUINTE 2-3-6-8-9-0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4-7 2 2 2 4 2 2 4 2 2 2 2 2 3 DO TRAÇO	1 2 3 4 5 6 7 7 8 9 0 0 ESPAÇA DE CÓDIGO 1 2 3 3	25 68 68 75 68 68 68 68 68 71 MENTO MEDIDO HO 100 24 19	31 85 85 93 85 85 85 85 85 85 85 85 85 24	37 102 102 112 102 102 102 102 102 107 107	175 43 119 119 131 119 119 119 119 125 DE DIREITA DA LET A 175 42 33 22	ALTURA DOS A 200 49 137 137 137 137 137 137 137 137 137 143 TABELA X RA OU ALGARISMO LTURA DAS LETRAS 200 48 38 25	LGARISMOS 250 62 171 187 187 171 171 171 171 171 171 179 PRECEDENTE ATÉ / 5 OU ALGARISMOS 250 60 48 32	74 205 205 204 205 205 205 205 205 205 205 214 A EXTREMIDADE ES 300 71 57 38	86 239 239 261 239 239 239 239 239 239 250 QUERDA DA LETRA 350 83 67 44	98 273 273 298 273 273 273 273 273 286 OU ALGARISMO SE 400 95 76 51	111 307 307 336 307 307 307 307 307 307 307 321 GUINTE 450 105 86 57
PRECEDENTE 1 2 3 4 5 6 6 7 8 9 0 ALTURA DA LETRA OU 11 11 11 12 22 33 33	1.5 1 1 1 2 1 1 1 2 1 1 1 1 1 ESPESSURA DO TR I ALGARISMO 00 00 00 00 00 00 00 00 00 00 00 00 00	2-3-6-8-9-0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 40 44 88 56	4-7 2 2 2 4 2 2 4 2 2 2 4 2 2 2 2 ADO TRAÇO	1 2 3 4 5 6 7 7 8 9 0 0 ESPAÇA DE CÓDIGO 1 2 3 3	25 68 68 75 68 68 68 68 68 71 MENTO MEDIDO HO 100 24 19	31 85 85 93 85 85 85 85 85 85 85 85 85 24	37 102 102 112 102 102 102 102 102 107 107	175 43 119 119 131 119 119 119 119 125 DE DIREITA DA LET A 175 42 33 22	ALTURA DOS A 200 49 137 137 137 137 137 137 137 137 137 143 TABELA X RA OU ALGARISMO LTURA DAS LETRAS 200 48 38 25	LGARISMOS 250 62 171 171 171 171 171 171 171 171 171 17	74 205 205 204 205 205 205 205 205 205 205 214 A EXTREMIDADE ES 300 71 57 38	86 239 239 261 239 239 239 239 239 239 250 QUERDA DA LETRA 350 83 67 44	98 273 273 298 273 273 273 273 273 286 OU ALGARISMO SE 400 95 76 51	111 307 307 336 307 307 307 307 307 307 307 321 GUINTE 450 105 86 57
PRECEDENTE 1 2 3 4 5 6 7 8 9 0 ALTURA DA LETRA OU 11 11 21 21 33 34 44 44 44	1-5 1 1 1 1 2 1 1 1 2 1 1 1 1 1 1 1 1 1 1	2-3-6-8-9-0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4-7 2 2 2 4 2 2 4 2 2 2 2 2 2 XDO TRAÇO	1 2 3 4 5 6 7 7 8 9 0 0 ESPAÇA DE CÓDIGO 1 2 3 3	25 68 68 75 68 68 68 68 68 71 MENTO MEDIDO HO 100 24 19	31 85 85 93 85 85 85 85 85 85 85 85 85 24	37 102 102 112 102 102 102 102 102 107 107	175 43 119 119 131 119 119 119 119 125 DE DIREITA DA LET A 175 42 33 22	ALTURA DOS A 200 49 137 137 137 137 137 137 137 137 137 143 TABELA X RA OU ALGARISMO LTURA DAS LETRAS 200 48 38 25	LGARISMOS 250 62 171 171 171 171 171 171 171 171 171 17	74 205 205 204 205 205 205 205 205 205 205 214 A EXTREMIDADE ES 300 71 57 38	86 239 239 261 239 239 239 239 239 239 250 QUERDA DA LETRA 350 83 67 44	98 273 273 298 273 273 273 273 273 286 OU ALGARISMO SE	111 307 307 336 307 307 307 307 307 307 307 321 GUINTE 450 105 86 57
PRECEDENTE 1 2 3 4 5 6 7 8 9 0 ALTURA DA LETRA OU 11 11 21 21 33 34 44 44 44	1.5 1 1 1 2 1 1 1 2 1 1 1 1 1 ESPESSURA DO TR I ALGARISMO 00 00 00 00 00 00 00 00 00 00 00 00 00	2-3-6-8-9-0 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 40 44 88 56	4-7 2 2 2 4 2 2 4 2 2 2 2 2 2 XDO TRAÇO	1 2 3 4 5 6 7 7 8 9 0 0 ESPAÇA DE CÓDIGO 1 2 3 3	25 68 68 75 68 68 68 68 68 71 MENTO MEDIDO HO 100 24 19	31 85 85 93 85 85 85 85 85 85 85 85 85 24	37 102 102 112 102 102 102 102 102 107 107	175 43 119 119 131 119 119 119 119 125 DE DIREITA DA LET A 175 42 33 22	ALTURA DOS A 200 49 137 137 137 137 137 137 137 137 137 143 TABELA X RA OU ALGARISMO LTURA DAS LETRAS 200 48 38 25	LGARISMOS 250 62 171 171 171 171 171 171 171 171 171 17	74 205 205 204 205 205 205 205 205 205 205 214 A EXTREMIDADE ES 300 71 57 38	86 239 239 261 239 239 239 239 239 239 250 QUERDA DA LETRA 350 83 67 44	98 273 273 298 273 273 273 273 273 286 OU ALGARISMO SE	111 307 307 336 307 307 307 307 307 307 307 321 GUINTE 450 105 86 57


GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN



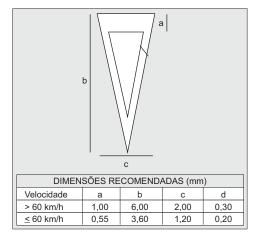
RODOVIA: PA-275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km


TABELA DE LARGURA DE LETRAS E ALGARISMOS



INSCRIÇÕES NO PAVIMENTO

DIMENSÕES E COR											
Velocidade a b c d e f Área Cor											
v < 60km/h	5,00	0,75	1,50	3,50	0,15	0,30	1,0875	Branca			
v >= 60km/h 7,50 0,75 2,25 5,25 0,15 0,30 1,6313 Branca											


				DIMEN	ISÕES	E CO	R			
Velocidade	а	b	С	d	е	f	g	h	i	j
v < 60km/h	5,00	1,25	2,20	0,65	0,15	0,50	0,30	0,90	1,95	0,70
v >= 60km/h	7,50	1,25	3,30	0,98	0,15	0,50	0,30	1,35	2,92	1,05
Velocidade	k	-	m	n	0	р	q	Área	١	Cor
v < 60km/h	0,90	0,60	1,05	1,15	0,70	1,50	0,38	1,875	50 B	ranca
v >= 60km/h	1,35	0,90	1,58	1,72	1,05	2,25	0,38	2,812	25 B	ranca

DIMENSÕES E COR												
Velocidade	а	b	С	d	е	f	g	h	i	j		
v < 60km/h	5,00	1,10	1,50	3,85	0,15	0,30	0,25	0,65	0,40	0,40		
v >= 60km/h	7,50	1,10	2,25	5,78	0,15	0,30	0,37	0,98	0,60	0,40		

Velocidade	Área	Cor
v < 60km/h	2,2650	Branca
v >= 60km/h	3,3987	Branca

SÍMBOLO DE DÊ A PREFERÊNCIA

OBSERVAÇÕES:

1- AS MARČAÇÕES NO PAVIMENTO SERÃO NA COR BRANCA 2- AS DIMENSÕES SÃO DADAS EM METRO

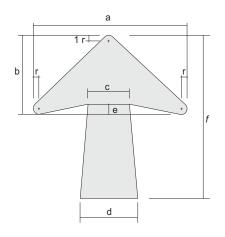
DIMENSÕES E COR												
Velocidade	а	Ь	O	d	е	f	g	h	i	j		
v < 60km/h	5,00	0,95	2,20	2,75	0,15	0,50	0,30	0,90	1,35	0,70		
v >= 60km/h	7,50	0,95	3,30	4,12	0,15	0,50	0,30	1,35	2,03	1,05		

Velocidade	k		Е	n	Área	Cor
v < 60km/h	0,90	0,60	1,05	1,15	1,3763	Branca
v >= 60km/h	1,35	0,90	1,58	1,72	2,0640	Branca

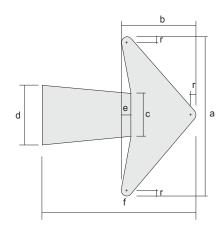
SETA INDICATIVA DE MUDANÇA OBRIGATÓRIA DE FAIXA

DIMENSÕES E COR											
Velocidade	а	b	С	d	е	f	g	h	i		
v < 60km/h	5,00	1,11	1,10	0,96	1,05	0,78	1,73	1,15	1,45		
v >= 60km/h	7,50	1,67	1,65	1,44	1,57	1,17	2,60	1,15	1,45		

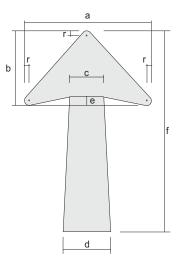
Velocidade	j	Área	Cor
v < 60km/h	2,60	3,8015	Branca
v >= 60km/h	2.60	5,7015	Branca


GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN

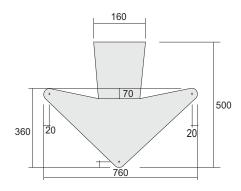
RODOVIA: PA-275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km



MARCAÇÃO NO PAVIMENTO


SETA HORIZONTAL, VERTICAL OU INCLINADA PARA UMA LINHA

ALTURA DAS			DIMENS	SÕES (mm)		
LETRAS	а	b	С	d	е	f	r
100	140	88	40	48	12	156	8
125	175	110	50	60	15	195	10
150	210	132	60	72	18	234	12
175	245	154	80	84	21	273	14
200	280	175	80	96	24	312	16
250	350	220	100	120	30	390	20
300	420	264	120	144	36	468	24
350	490	308	140	168	42	546	28
400	560	352	160	192	46	624	32
450	630	396	180	216	54	702	36


SETA HORIZONTAL PARA DUAS LINHA

ALTURA DAS	DIMENSÕES (mm)									
LETRAS	а	b	С	d	е	f	r			
100	176	100	40	48	12	156	8			
125	220	125	50	60	15	195	10			
150	264	150	60	72	18	234	12			
175	305	175	70	84	21	273	14			
200	352	200	80	96	24	312	16			
250	440	250	100	120	30	390	20			
300	628	300	120	144	36	468	24			
350	616	350	140	166	42	546	28			
400	704	400	160	192	48	624	32			
450	702	450	180	216	54	702	36			

SETA VERTICAL OU DIAGONAL PARA DUAS LINHA

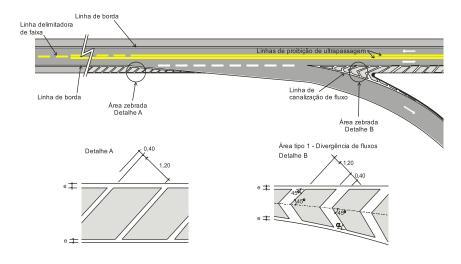
ALTURA DAS			IMENS	SÕES (mm)		
LETRAS	а	ь	u	d	е	f	r
100	140	112	40	48	12	220	8
125	175	140	50	60	15	265	10
150	210	164	60	72	18	342	12
175	245	196	70	84	21	390	14
200	260	224	80	96	24	456	16
250	350	280	100	120	30	570	20
300	420	338	120	144	36	684	24
350	490	392	140	168	42	798	28
400	560	448	160	192	48	912	32
450	630	504	180	216	54	1026	36

SETA VERTICAL PARA BAIXO

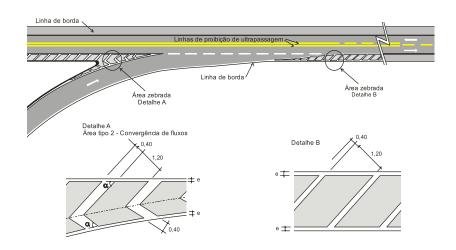
OBSERVAÇÃO:

- AS SETAS SERÃO EXECUTADAS NA COR BRANCA.

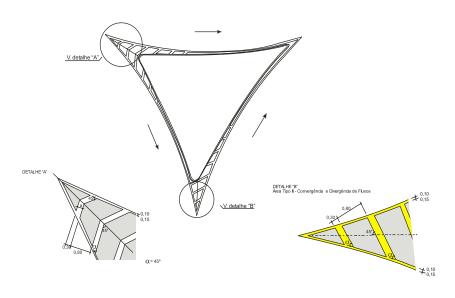
GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN

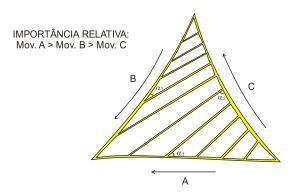


RODOVIA: PA-275 (LOTE I)
TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS
SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km


QD

DETALHES DE SETAS - SINALIZAÇÃO VERTICAL

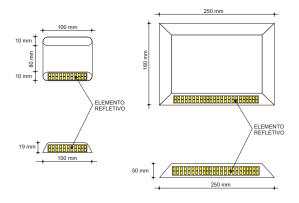

SINALIZAÇÃO HORIZONTAL PARA SAÍDA DE RAMO DE UMA FAIXA


SINALIZAÇÃO HORIZONTAL PARA ENTRADA DE RAMO DE UMA FAIXA

SINALIZAÇÃO HORIZONTAL PARA ILHA DISTRIBUIDORA

CANALIZAÇÃO POR PINTURA DA ILHA TRIANGULAR COM LINHAS DIAGONAIS EM DIREÇÃO ÚNICA

GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN



RODOVIA: PA-275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km SETRAN

SINALIZAÇÃO HORIZONTAL - ÁREA ZEBRADA

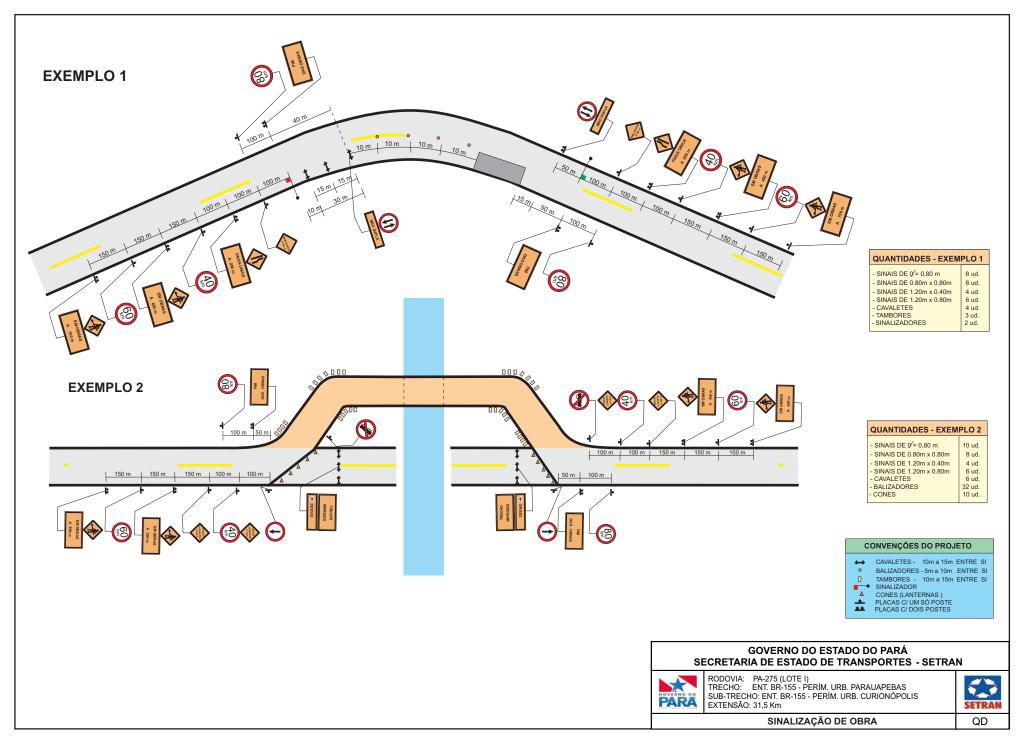
DETALHE DA TACHA

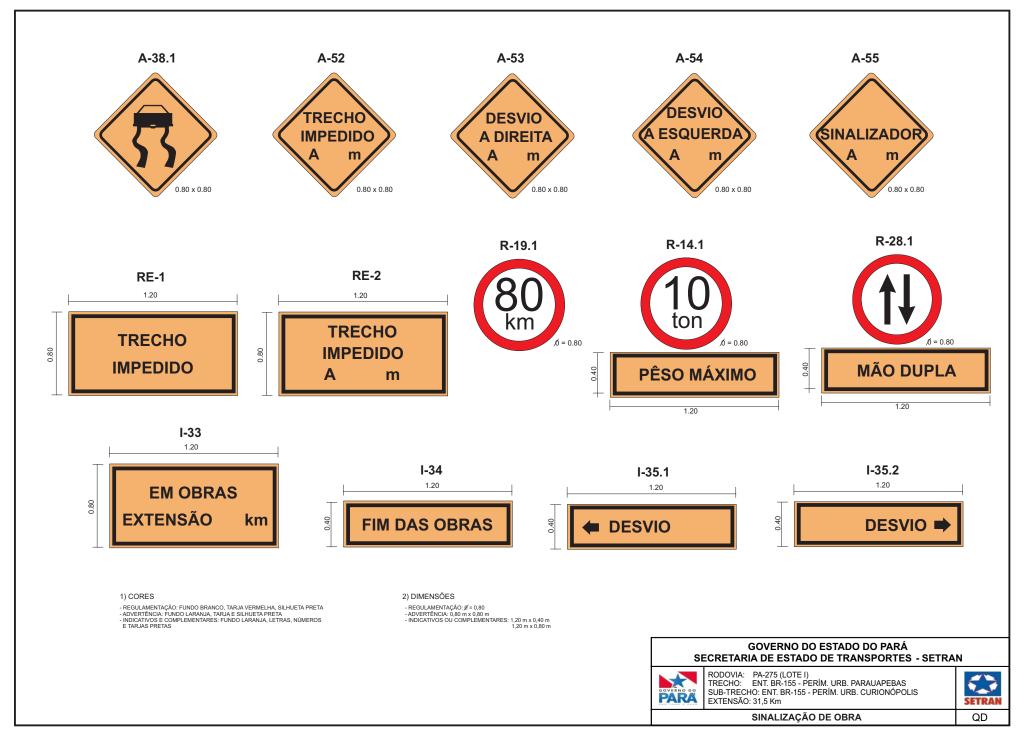
DETALHE DO TACHÃO

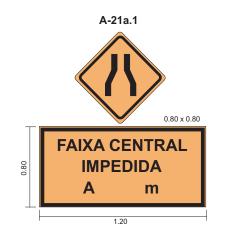
			ESPAÇAMENTO	
Tipo de Via	Tipo e Cor	Trecho em Tangente	Trecho Sinuoso ou com alta pluviosidade ou sujeito a neblina	Trecho que antecede obstáculo ou obra de arte (150m para cada lado)
		Pista Simples	•	•
Linha de bordo	Bidirecionais Brancas	A cada 16,0 m	A Cada 8,0 m	A cada 4,00 m
Linha de eixo para divisão de fluxo de sentidos opostos	Bidirecionais amarelas	A cada 16,0 m	A Cada 8,0 m	A cada 4,00 m
Linha de divisão de fluxo de mesmo sentido – terceira faixa	Monodirecionais brancas	A cada 16,0 m	A Cada 8,0 m	A cada 4,00 m
		Pistas múltiplas		
Linha de bordo	Monodirecionais brancas	A cada 16,0 m	A Cada 8,0 m	A cada 4,00 m
Linha de eixo para divisão de fluxo de sentidos opostos	Bidirecionais amarelas	A cada 16,0 m	A Cada 8,0 m	A cada 4,00 m
Linha de eixo pra divisão de fluxo de mesmo sentido	Monodirecionais brancas	A cada 16,0 m	A Cada 8,0 m	A cada 4,00 m
Linha de eixo contínuo de fluxo de mesmo sentido (proibição mudança de faixa)	Monodirecionais brancas	A cada 16,0 m	A Cada 8,0 m	A cada 4,00 m

- Preferencialmente, esses dispositivos deverão ser implantados da seguinte forma:
 - Entre as linhas de eixo, quando duplas e contínuas;
 - Sobre as faixas quando simples e contínuas;
 - No meio dos segmentos interrompidos de pintura da faixa descontínua;
- Os tachões são utilizados, principalmente, nas Linhas de Canalização de áreas de narizes, podendo ser do tipo monodirecional ou bidirecional, conforme se situem em áreas de narizes separando faixas com mesmo sentido ou com sentido oposto de tráfego.

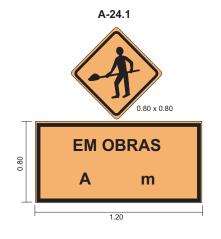
Situação a vencer	Tipo/Cor	Espaçamento
Normal	Seguem a cor das linhas de canalização, sendo bidirecionais caso amarelas ou monodirecionais brancas.	2,0 m
Extensão de colocação pequena e ângulo de convergência das linhas de canalização acentuado ou aumentado	Seguem a cor das linhas de canalização, sendo bidirecionais caso amarelas ou monodirecionais brancas.	1,0 m
Linhas de canalização com ângulo de convergência ou divergência pequeno	Seguem a cor das linhas de canalização, sendo bidirecionais caso amarelas ou monodirecionais brancas.	≤3,0 m
Trechos de proibição de ultrapassagem com histórico de desobediência por parte dos usuários, e segm entos caracterizados como críticos em termos de acidentes.	Bidirecionais amarelas	4,0 m
Utilizados para separar uma faixa exclusiva de tráfego em segmentos de Via Expressa	Monodirecionais brancas	4,0 m

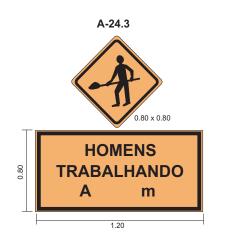

GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN

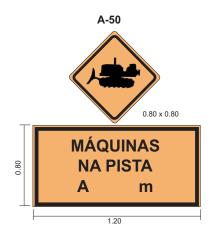



RODOVIA: PA-275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km

TACHAS E TACHÕES C



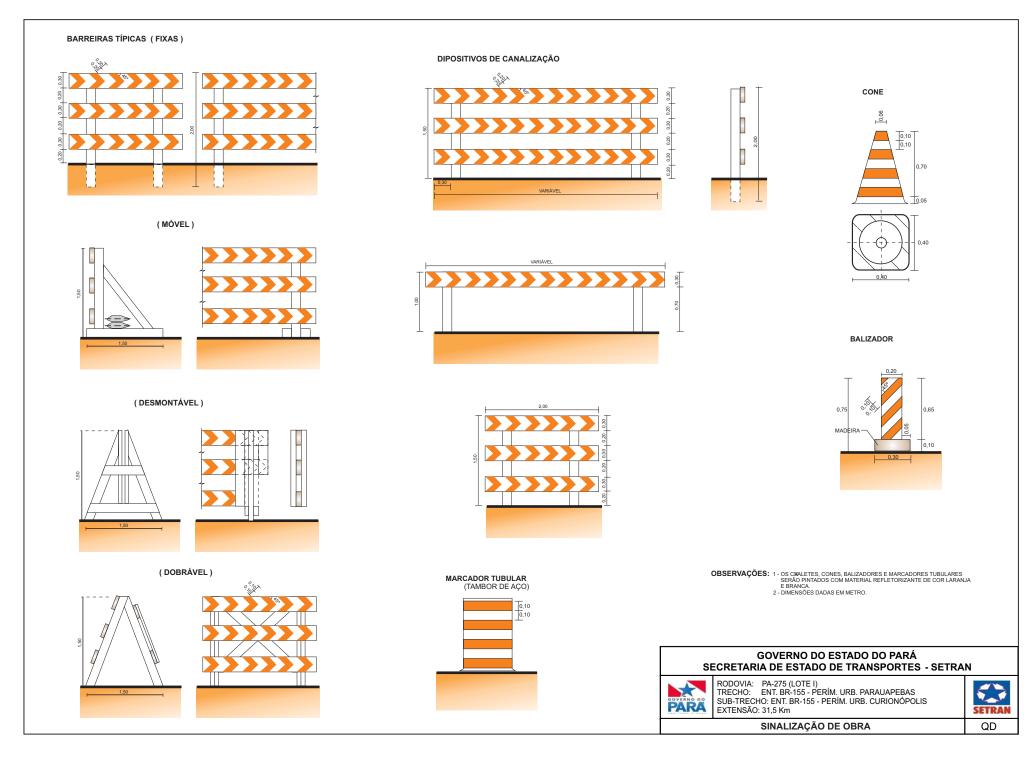




1) CORES

- REGULAMENTAÇÃO: FUNDO BRANCO, TARJA VERMELHA, SILHUETA PRETA ADVERTÊNCIA: FUNDO LARANJA, TARJA E SILHUETA PRETA INDICATIVOS E COMPLEMENTARES: FUNDO LARANJA, LETRAS, NÚMEROS E TARJAS PRETAS

2) DIMENSÕES


- PEGILAMENTAÇÃO: 0 = 0,80 ADVERTÊNCIA: 0,80 m x 0,80 m INDICATIVOS OU COMPLEMENTARES: 1,20 m x 0,40 m 1,20 m x 0,80 m

GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN

RODOVIA: PA-275 (LOTE I)
TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km

SINALIZAÇÃO DE OBRA

5.6 Projeto de Obras de Arte Especiais

A título meramente informativo existe ao longo do trecho projetado 05 (cinco) obras de arte especial (Pontes) em concreto armado com suficiência de vazão.

As obras estão localizadas conforme descrições abaixo e possuem as seguintes extensões;

ESTACA INICIAL	ESTACA FINAL	EXTENSÃO (m)	TIPO DE ESTRUTURA	NOME DO IGARAPÉ
30 + 0,00	37 + 10,00	150,00	CONCRETO	RIO VERMELHO
60 + 0,00	61 + 0,00	20,00	CONCRETO	-
750 + 0,00	751 + 0,00	20,00	CONCRETO	-
860 + 0,00	861 + 0,00	20,00	CONCRETO	-
1050 + 0,00	1050 + 15,00	15,00	CONCRETO	-

6. QUADRO DE QU	ANTIDADES		

	RESUMO DE ORÇAMENTO									
ITEM	SERVIÇOS	UND	QUANT.	PREÇO UNITÁRIO	TOTAL (R\$)					
I	SERVIÇOS PRELIMINARES									
1.1	Mobilização / desmobilização de máquinas, veículos, equipamentos e pessoal	und	1,00							
1.2	Canteiro de Obras	m²	664,00							
1.3	Placa de Obra	m²	36,00							
1.4	Limpeza lateral Mecanizada	m²	255.400,00							
1.5	Limpeza lateral Manual	há	10,22							
1.6	Remoção de Material para bota fora - (fresagem/mat. Inservivel) DMT até 10,0km)	m³	5.353,92							
II	SERVIÇOS DE CONSERVAÇÃO (Recuperação de Defeito Localizado no Paviment	0)								
2.1	Recuperação do pavimento, Tapa-buraco com CBUQ	t	84,00							
2.2	Remendo Profundo com CBUQ	t	1.170,00							
III	SERVIÇOS DE TERRAPLENAGEM									
3.1	Escav. Carga e Transporte de Mat. De 1ª Cat. DMT até 10,0km c/ carreg.	m³	166.010,00							
3.2	Compactação de aterro a 100% Proctor Normal	m³	127.700,00							
3.3	Esc. Carga transp. Solos moles DMT até 10 km	m³	9.072,00							
3.4	Camada de drenagem para fundação de aterro com areia	m³	9.072,00							
IV	SERVIÇOS DE PAVIMENTAÇÃO									
4.1	Regularização do Sub Leito	m²	117.484,00							
4.2	Sub-Base solo estabilizado granulometricamente sem mistura DMT=35,0km	m³	22.986,00							
4.3	Sub-base (Reciclagem do Pavimento Existente)	m³	1.400,00							
4.4	Base solo estabilizado granulometricamente sem mistura DMT=35,0km	m³	23.364,40							
4.5	Imprimação	m²	109.160,00							
4.6	Pintura de ligação	m²	323.321,50							
4.7	Correção de defeitos com Fresagem descontinua (Esp. Até 3,0cm)	m³	2.948,40							
4.8	Concreto Betuminoso Usinado a Quente - Capa de Rolamento	t	23.447,15							
V	SERVIÇOS DE DRENAGEM									
5.1	Escavação de vala para implanteção de bueiros	m³	1.280,00							
5.2	Compactação e reaterro	m³	768,00							
5.3	Corpo de bueiro tubular de concreto D=1,00m (BSTC)	m	104,00							
5.4	Corpo de bueiro tubular de concreto D=1,00m (BDTC)	m	32,00							
5.5	Corpo de bueiro tubular de concreto D=1,00m (BTTC)	m	24,00							
5.6	Boca de bueiro tubular de concreto D=1,00m (BSTC)	und	26,00							
5.7	Boca de bueiro tubular de concreto D=1,00m (BDTC)	und	8,00							
5.8	Boca de bueiro tubular de concreto D=1,00m (BTTC)	und	6,00							
5.9	Meio fio de concreto - MFC 03	m	16.200,00							
5.10	Entrada de Água - EDA-02	und	270,00							
5.11	Descida d'água tipo canal retang - DAR-02	m	540,00							
5.12	Dissipador de energia - DEB 01	und	270,00							
VI	SERVIÇOS DE SINALIZAÇÃO									
6.1	SINALIZAÇÃO HORIZONTAL									
6.1.1	Pintura faixa - tinta durabilidade - 2 anos	m²	16.065,00							
6.1.2	Pintura de Setas e Zebrados - 2 anos	m²	423,00							
6.1.3	Forn. e colocação de tacha reflet. Bidirecional - Und	und	11.475,00							
6.1.4	Forn. E colocação de tachões reflet. Bidirecional	und	170,00							
6.2	SINALIZAÇÃO VERTICAL									
6.2.1	Forn. e implantação placa sinaliz. Tot. refletiva	m²	211,38							
VII	PROJETO									
7.1	Detalhamento de projeto	Km	31,50							

GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN

Rodovia: PA - 275 (Lote I)
Trecho: Ent. BR-155 x Perímetro Urb. Parauapebas
Sub Trecho: Ent. BR-155 x Perímetro Urb. Curionopólis
Extensão: 31,5 Km

SETRAN QD

QUADRO DE QUANTIDADES

E	S 및 R				DMT			PREÇO (R\$)	TOTAL
XTEN:	DDOV	ITEM	DISCRIMINAÇÃO	ESPECIFICAÇÕES	(km)	UNID.	QUANTIDADES	UNITÁRIO	(R\$)
EXTENSÃO: 31,5 Km	RODOVIA: PA-275 (LOTE I) TRECHO: ENTRONC. BR-155 - PERÍM. URB. DE PARAUAPEBAS	I	SERVIÇOS PRELIMINARES		(KIII)			CIVITARIO	(K
5 Km	275 (LI ONC.	1.1	Mobilização / desmobilização de máquinas, veículos, equipamentos e pessoal			und	1,00		
JNC. I	OTE I) BR-15	1.2	Canteiro de Obras			m²	664,00		
X-15	5 - PE	1.3	Placa de Obra			m²	36,00		
) - FE	RÍM. U	1.4	Limpeza lateral Mecanizada			m²	255.400,00		
CIM. C	JRB. I	1.5	Limpeza lateral Manual			há	10,22		
Ā.b.	DE PA	1.6	Remoção de Material para bota fora - (fresagem/mat. Inservivel) DMT até 10,0km)			m³	5.353,92		
1	RAUA								
	PEBA								
OLL)	S. S.								
SET									
SETRAN-PA	QUΑ								
Į-PA	DRO								
	DE								
	QUA								
<u>D</u>	ITN								
QD -	QUADRO DE QUANTIDADES								
	ES								

ſ	μ v	l R				DME			DDEGO (DA)	TOTAL
	SUB-TRECHO: ENTRONC. BR-155 - PERIM. URB. DE CURINOPOLIS EXTENSÃO: 31,5 Km	RODOVIA: PA-275 (LOTE I) TRECHO: ENTRONC. BR-155 - PERÍM. URB. DE PARAUAPEBAS	ITEM	DISCRIMINAÇÃO	ESPECIFICAÇÕES	DMT	UNID.	QUANTIDADES	PREÇO (R\$)	TOTAL
	RECE	VIA: IO: EI				(km)			UNITÁRIO	(R\$)
	10: E	PA-2 NTRC	II	SERVIÇOS DE CONSERVAÇÃO (Recuperação de Defeito Localizado no Pavimento)						
	Km	75 (L¢	2.1	Recuperação do pavimento, Tapa-buraco com CBUQ			t	84,00		
	ÑC.)ΤΕ Ι) 3R-15	2.2	Remendo Profundo com CBUQ			t	1.170,00		
	3R-15	5 - PE								
	5 - PE	RÍM.								
	RIM.	URB								
	URB.	. DE I								
	DEC	ARA								
	ÜRIN	UAPE								
	(OPO	BAS								
ŀ										
	SET									
	SETRAN-PA	QUA								
	Ę.	DRO								
) DI								
		ΩU								
		JAN'								
	QD -	QUADRO DE QUANTIDADES								
		DE								
		S								

EXTENSÃO: 31,5 Km	RODOVIA: PA-275 (LOTE I) TRECHO: ENTRONC. BR-155	ITEM	DISCRIMINAÇÃO	ESPECIFICAÇÕES	DMT (km)	UNID.	QUANTIDADES	PREÇO (R\$) UNITÁRIO	TOTAL (R\$)
Оно: ы	x: PA-2: ENTRO	III	SERVIÇOS DE TERRAPLENAGEM						
Km	75 (LO)NC. B	3.1	Escav. Carga e Transporte de Mat. De 1ª Cat. DMT até 10,0km c/ carreg.			m³	166.010,00		
YС. В	TE I) R-155	3.2	Compactação de aterro a 100% Proctor Normal			m³	127.700,00		
(- 155 -	- PERI	3.3	Esc. Carga transp. Solos moles DMT até 10 km			m³	9.072,00		
SUB-TRECHO: ENTRONC. BR-133 - PERIM. URB. DE CURINOPOLIS EXTENSÃO: 31,5 Km	RODOVIA: PA-275 (LOTE I) TRECHO: ENTRONC. BR-155 - PERÍM. URB. DE PARAUAPEBAS SUB-TRECHO: ENTRONC BB-155 - BEBÍM 1 DB-DE CUBRIÓROL	3.4	Camada de drenagem para fundação de aterro com areia			m³	9.072,00		
SETRAN-PA									
QD -	QUADRO DE QUANTIDADES								

RODO ITEM	DISCRIMINAÇÃO	ESPECIFICAÇÕES	DMT (km)	UNID.	QUANTIDADES	PREÇO (R\$) UNITÁRIO	TOTAL (R\$)
TITEM IV 4.1 4.2 4.3 4.4 4.5 TRECHO: ENTRONC. BR-155 - PERÍM. URB. DE PARAUAPEBAS SUB-TRECHO: ENTRONC. BR-155 - PERÍM. URB. DE CURINÓPOLIS	SERVIÇOS DE PAVIMENTAÇÃO						
A-275 FRON(Regularização do Sub Leito			m²	117.484,00		
RONC LOTH 4.2	Sub-Base solo estabilizado granulometricamente sem mistura DMT=35,0km		35,00	m³	22.986,00		
4.3 BR-1	Sub-base (Reciclagem do Pavimento Existente)			m³	1.400,00		
4.4 ERÍM.	Base solo estabilizado granulometricamente sem mistura DMT=35,0km		35,00	m³	23.364,40		
ERÍM. 4.5	Imprimação			m²	109.160,00		
DE P/	Pintura de ligação			m²	323.321,50		
ARAU.	Correção de defeitos com Fresagem descontinua (Esp. Até 3,0cm)			m³	2.948,40		
APEB/	Concreto Betuminoso Usinado a Quente - Capa de Rolamento			t	23.447,15		
QUADRO DE QUANTIDADES							

EXTEN	RODOV	ITEM	DISCRIMINAÇÃO	ESPECIFICAÇÕES	DMT (km)	UNID.	QUANTIDADES	PREÇO (R\$) UNITÁRIO	TOTAL (R\$)
EXTENSÃO: 31,5 Km	RODOVIA: PA-275 (LOTE I) TRECHO: ENTRONC. BR-155 - PERÍM. URB. DE PARAUAPEBAS	V	SERVIÇOS DE DRENAGEM		, ,				
5 Km	275 (LO	5.1	Escavação de vala para implanteção de bueiros			m³	1.280,00		
, i)TE I) 3R-155	5.2	Compactação e reaterro			m³	768,00		
1100-1	- PERÍ	5.3	Corpo de bueiro tubular de concreto D=1,00m (BSTC)			m	104,00		
	M. URB	5.4	Corpo de bueiro tubular de concreto D=1,00m (BDTC)			m	32,00		
5	. DE PA	5.5	Corpo de bueiro tubular de concreto D=1,00m (BTTC)			m	24,00		
	VR AUA	5.6	Boca de bueiro tubular de concreto D=1,00m (BSTC)			und	26,00		
	PEBAS	5.7	Boca de bueiro tubular de concreto D=1,00m (BSTC)			und	8,00		
	31 16	5.8	Boca de bueiro tubular de concreto D=1,00m (BTTC)			und	6,00		
		5.9	Meio fio de concreto - MFC 03			m	16.200,00		
		5.10	Entrada de Água - EDA-02			und	270,00		
SETI		5.11	Descida d'água tipo canal retang - DAR-02			m	540,00		
SETRAN-PA	QUAI	5.12	Dissipador de energia - DEB 01			und	270,00		
Ď	DRO 1								
	DE QU								
Q D	JANT								
'	QUADRO DE QUANTIDADES								
	ES								

PREÇO (R\$) UNITÁRIO	TOTAL (R\$)
UNITARIO	(K\$)
0	0 0 0 0 8 8

EXTEN	RODOV TRECH	ITEM	DISCRIMINAÇÃO	ESPECIFICAÇÕES	DMT	UNID.	QUANTIDADES	PREÇO (R\$)	TOTAL
EXTENSÃO: 31,5 Km	RODOVIA: PA-275 (LOTE I) TRECHO: ENTRONC. BR-155 - PERÍM. URB. DE PARAUAPEBAS SUR-TRECHO: ENTRONC RR-155 - PERÍM URB. DE CURINÓPOLIS		PROJETO Detalhamento de projeto		(km)	Km	31,50	UNITÁRIO	(R\$)
	M TIRB DE CTIRINÓPOLIS								
SETRAN-PA	QUADRO DE QUANTIDADES								
QD -	JANTIDADES								

7. CRONOGRAMA FÍSIC	: 0	

RODOVIA PA-275 (LOTE-I) MESES SERVIÇOS ITEM 1 2 3 4 5 6 MOBILIZ / DESMOB / CANTEIRO SERVIÇOS DE CONSERVAÇÃO 2 3 TERRAPLENAGEM DRENAGEM 5 OBRAS DE ARTE CORRENTE PAVIMENTAÇÃO 6 SINALIZAÇÃO GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN RODOVIA: PA -275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km CRONOGRAMA FÍSICO QD

8. CONSUMO DE MATERIAIS

	TEDIAIC		CONSUMO POR (m³)			CONSUMO POR (t)				
IWIA	MATERIAIS UNID. QUANTIDADE UN		UNID.	QUANTIDADE	UNID.	QUANTIDADE	UNID.	QUANTIDADE		
	a a va a a da	Brita	m³	(0,55 x 2,40) / 1,5 = 0,88	t	0,55 x 2,40 = 1,32	m³	(0,55 x 1) / 1,5 = 0,37	t	0,370
	agregado	Areia	m³	(0,36 x 2,40) / 1,5 = 0,576	t	0,36 x 2,40 = 0,864	m³	(0,36 x 1) / 1,5 = 0,24	t	0,240
CBUQ	Filler			(0,03 x 2,40) / 1,5 = 0,048	t	0,03 x 2,40 = 0,072			t	0,030
	Ligante			(0,06 x 2,40) / 1,5 = 0,096	t	0,06 x 2,40 = 0,144			t	0,060
SERVIÇOS	MATERIAIS			CONSUMO POR (m²)						
IMPRIMAÇÃO	LIGANTE (CM-30)		I	1,10	t	1,10 / 1.000 = 0,0011				
P. DE LIGAÇÃO	LIGANTE (RR-2C-30)		I	0,50	t	0,5 / 1.000 = 0,00050				
TRAÇO DO (CBUQ) FAIXA "C"							DENSIDADES			
Agregado = 91 % (AREIA = 36% / BRITA = 55%)		6)				Areia solta = 1,5 t/m³				
Filler = 3,0 %					CBUQ = 2,40 t/m ³					
CAP /50-60	= 6,0 %									

GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN RODOVIA: PA-275 (LOTE I)

RODOVIA: PA -275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km

CONSUMO DE MATERIAIS

9. RELAÇÃO DE EQUIPAM	ENTOS MÍNIMOS	

CÓDIGO	DESCRIÇÃO	TIPO, POTÊNCIA OU CAPACIDADE	QUANTIDADE
E.0.03	Trator de esteira com lâmina	300 HP	01
E.0.06	Motoniveladora	100 a 140 HP	03
E.0.07	Trator de pneus tipo agrícula	90 HP	01
-	Escavadeira de pneus	1 jd³	01
E.0.10	Carregadeira de pneus	165 HP	01
E.0.13	Rolo pé-de-carneiro autopropelido	130 HP	01
E.1.02	Rolo liso vibratório autopropelido tipo tandem	5 a 8 t	01
E.1.03	Rolo Liso vibratório autopropelido	15 t	01
E.1.05	Rolo compactador de pneus	8 a 26 t	01
E.1.07	Vassoura mecânica	-	01
E.1.10	Tanque de estocagem de asfalto	20.000 I	02
E.1.11	Caminhão destribuidor de asfalto	6.000 I	01
E.1.25	Usina de asfalto gravimétrica	60/80 t/h	01
E.1.14	Vibro Acabadora de asfalto	100 a 200 t/h	01
E.4.03	Caminhão basculante	12 m³	08
E.4.02	Caminhão carroceria de madeira	15 t	01
E.4.07	Caminhão tanque	10.000 I	01
E.2.03	Compressor de ar	Cap. 750 pcm	01
E.5.04	Grupo gerador	Cap. 392 KVA	01
E.2.26	Conjunto de britagem	80 m³/h	01

GOVERNO DO ESTADO DO PARÁ SECRETARIA DE ESTADO DE TRANSPORTES - SETRAN

RODOVIA: PA -275 (LOTE I) TRECHO: ENT. BR-155 - PERÍM. URB. PARAUAPEBAS SUB-TRECHO: ENT. BR-155 - PERÍM. URB. CURIONÓPOLIS EXTENSÃO: 31,5 Km

SETRAN

RELAÇÃO DE EQUIPAMENTOS MÍNIMOS

10. INFORMAÇÕES P/	ELABORAÇÃO DO PLA	ANO DE EXECUÇÃO	

10.1 Fatores Condicionantes.

10.1.1 Clima

A região amazônica está submetida a climas do grupo "A", da classificação de Köeppen, clima úmido tropicais com estação fria, com a temperatura do mês menos quente superior a 22°C.

O trecho em estudo está submetido à subdivisão "Am" do Grupo A, apresentando as seguintes características:

- A estação seca é bem acentuada e de pequena duração;
- O semestre mais chuvoso é o de dezembro a maio e o menos chuvoso, é o de junho a novembro;
- As temperaturas máximas diárias são inferiores a 32,0°C e as mínimas, superiores a 23,0°C;
- O índice pluviométrico anual encontra-se na ordem de 2000mm³.

Em relação às precipitações pluviométricas, foi utilizado o posto localizado em Xambioá, como representativo do trecho.

Como já citado, o período de maior precipitação pluviométrica estende-se de dezembro a maio e compreende cerca de 67% da precipitação total do ano.

A análise dos quadros acima citados permite a seguinte estimativa de rendimento dos trabalhos de construção:

Julho a Novembro : 70% do rendimento normal;
 Dezembro a Janeiro : 20% do rendimento normal;
 Janeiro a Maio : 10% do rendimento normal.

10.2 Organizações e Prazos

10.2.1 Prazo e Início dos Serviços

O prazo para a execução dos serviços foi estabelecido em 180 dias consecutivos, o que equivale há 06 meses.

5.2.2 Acampamento e Usina de Asfalto

A instalação da usina do trecho foi, por razões de minimizar os momentos de transporte de agregados para a mistura, considerada na estaca 0+0,00.

O acampamento e as centrais, por razões de funcionabilidade, deverão ser instalados ao lado da usina, bem como escritórios e alojamento para a fiscalização, laboratório e veículos.

A empresa contratada para executar os serviços, deverá construir em seu acampamento junto à usina de asfalto, as seguintes instalações:

Alojamento e escritório para a fiscalização

Deverão ser construídos em local a ser previamente combinado com a fiscalização e iniciado antes ou simultaneamente com a construção do acampamento da obra.

As seguintes áreas para fiscalização devem ser consideradas:

Escritório : 80 m2
Alojamento : 100 m2
Laboratório : 60 m2

- Laboratório de solos e de asfalto: a empresa contratada para a execução dos serviços deverá instalar um laboratório de solos e de asfalto para o controle de qualidade dos serviços em local a ser previamente combinado com a fiscalização. Esse laboratório deverá ser dotado de todos os instrumentos necessário para a realização de ensaios de controle dos serviços (terraplenagem, sub-base, base e revestimento asfaltico),
- Instrumental para os serviços de topografia: todo o instrumental necessário para a realização dos levantamentos topográficos e controle geométrico deverá ser alocado pela empresa contratada.

10.2.3 Pessoal técnico necessário à execução da obra

Tendo em vista os diversos itens de serviço, seus quantitativos e o prazo de execução, considerase como essencial ao desenvolvimento das obras, a seguinte equipe básica:

Pessoal de Nível Superior

- 1 Engenheiro Chefe (Coordenador)
- 1 Engenheiro de Pavimentação e Terraplenagem
- 1 Engenheiro Mecânico
- 1 Engenheiro Auxiliar

Pessoal de Nível Médio

- 1 Chefe de Escritório
- 1 Laboratorista Chefe
- 1 Laboratorista
- 2 Laboratoristas Auxiliares
- 1 Encarregado de Terraplenagem
- 1 Encarregado de Pavimentação
- 1 Encarregado de Drenagem
- 1 Encarregado de Obras de Arte Correntes
- 1 Topógrafo Chefe
- 1 Topógrafo
- 1 Topógrafo Auxiliar
- 1 Encarregado de Transporte
- 1 Encarregado do Setor de Medição
- 1 Chefe de Oficina

11.	ESPECIFICAÇÕES TÉCNICAS		

11.1 Especificação Geral

A seguir são listadas as Especificações de Serviços para a execução das obras constantes do caderno de "Especificações Gerais para Obras Rodoviárias" do DNIT, antigo DNER, aplicáveis ao presente projeto.

a) Terraplenagem

- DNIT-ES 104/2009 Serviços Preliminares;
- DNIT-ES 105/2009 Caminhos de Serviço;
- DNIT-ES 106/2009 Cortes;
- DNIT-ES 107/2009 Empréstimos;
- DNIT-ES 108/2009 Aterros.

b) Pavimentação

- DNIT-ES 137/2010 Regularização do Subleito;
- DNIT-ES 139/2010 Sub-base estabilizada granulometricamente;
- DNIT-ES 141/2010 Base estabilizada granulometricamente;
- DNIT-ES 144/2010 Imprimação com ligante asfáltico convencional;
- DNIT-ES 145/2010 Pintura de ligação com ligante asfáltico convencional;
- DNIT-ES 031/2006 Concreto asfáltico;
- DNIT-ES 151/2010 Acostamentos;

c) Drenagem e Obras-de-Arte Correntes

- DNIT-ES 020/2004 Meios Fios e Guias;
- DNIT-ES 021/2004 Entradas e Descidas d'água;
- DNIT-ES 023/2006 Bueiros Tubulares de Concreto;
- DNIT-ES 027/2004 Demolição de Dispositivos de Concreto;
- DNIT-ES 028/2004 Limpeza e Desobstrução de Dispositivos de Drenagem;
- DNIT-ES 029/2004 Restauração de Dispositivos de Drenagem Danificada;

d) Sinalização

- DNER-ES 339/97 Sinalização Horizontal;
- DNER-ES 340/97 Sinalização Vertical;